
AD-A259 49t1
LiI " 1 11., 1 1 ,11 1 jII

Technical Report 1385

Automatic Analysis and
Synthesis of Controllers for

Dynamical Systems Based on
Phase-Space Knowledge

Feng Zha

MIT Artificial Intelligence Laboratory

DTIC
S• ELECTE

JAN 2 5 1993

Et

93-01208.

Approved for public x eleaao

938 22 116
.. V ,;



Form Approved
REPORT DOCUMENTATION PAGE I OMB N. 0704-0188

PUblic reporting b~rdene for this collecion of information is estimated to average Ihour ger response. including the time for reviewing instructiors. searcthinq ev•iting data sources.
gatherng and maitainng the data needed, and completing and revewin the Collection of information Send comments regarding this burden estimate or any other asoect of this
collection Of information, includng suggestion, for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 12 1S Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Profect (0704-0188). Washsngton. OC S0$03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1992 technical report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Automatic Analysis and Synthesis of Controllers for N00014-89-J-3202
Dynamical Systems Based on Phase-Space Knowledge MIP-9001651

6. AUTHOR(S)

Feng Zhao

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

545 Technology Square
Cambridge, Massachusetts 02139 AI-TR 1385

9. SPONSORING IMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Office of Naval Research AGENCY REPORT NUMBER

Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

This thesis presents a novel design methodology for the synthesis of automatic

controllers, together with a computational environment-the Control Engineer's

Workbench-integrating a suite of programs that automatically analyze and de-

sign controllers for high-performance, global control of nonlinear systems. This

work demonstrates that difficult control synthesis tasks can be automated, using

programs that actively exploit and efficiently represent knowledge of nonlinear dy-

namics and phase space and effectively use the representation to guide and perform

the control design. The Control Engineer's Workbench combines powerful numer-

ical and symbolic computations with spatial reasoning techniques. The two major

(ccntinued on back)

14. SUBJECT TERMS (key words) IS. NUMBER OF PAGES

artificial intelligence numeric/symbolic processing 145

qualitative reasoning nonlinear dynamics 16. PRICE CODE

scientific computin_ controlsystemdsin
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-11
191. 102



Block 13 continued:

programs in the Workbench-Phase Space Navigator and MAPS-work together

to model and reason about the phase-space geometry and topology of a given sys-

tem, to plan global control reference trajectories, and to navigate the system along

the planned trajectories. They use a novel technique of "flow pipes" to group in-

finite numbers of distinct behaviors into a manageable discrete set that becomes

the basis for establishing the reference trajectories.

As a demonstration of this approach, I exhibit the automatic design of a non-

linear controller for a magnetic levitation system. The control system synthesized

by the Workbench can stabilize a maglev vehicle with large initial displacements

from an equilibrium and outperform the classical linear feedback design for the

same system by a factor of 20.

Accesion For

NTIS CRA&M
DTIC TAB
Unannounced I-3
justification ...... .-.......................-

-DistributionOr

Dist Special

-14



Automatic Analysis and Synthesis of Controllers for
Dynamical Systems Based on Phase-Space Knowledge

by

Feng Zhao

Submitted to the Department of Electrical Engineering and Computer Science

on August 19, 1992 in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Computer Science

at Massachusetts Institute of Technology

Abstract

This thesis presents a novel design methodology for the synthesis of automatic

controllers, together with a computational environment-the Control Engineer's

Workbench-integrating a suite of programs that automatically analyze and de-

sign controllers for high-performance, global control of nonlinear systems. This

work demonstrates that difficult control synthesis tasks can be automated, using

programs that actively exploit and efficiently represent knowledge of nonlinear dy-

namics and phase space and effectively use the representation to guide and perform

the control design. The Control Engineer's Workbench combines powerful numer-

ical and symbolic computations with spatial reasoning techniques. The two major

programs in the Workbench-Phase Space Navigator and MAPS-work together

to model and reason about the phase-space geometry and topology of a given sys-

tem, to plan global control reference trajectories, and to navigate the system along

the planned trajectories. They use a novel technique of "flow pipes" to group in-

finite numbers of distinct behaviors into a manageable discrete set that becomes

the basis for establishing the reference trajectories.

As a demonstration of this approach, I exhibit the automatic design of a non-
linear controller for a magnetic levitation system. The control system synthesized

by the Workbench can stabilize a maglev vehicle with large initial displacements

from an equilibrium and outperform the classical linear feedback design for the

same system by a factor of 20.

Keywords. Artificial intelligence, scientific computing, control system design,

numeric/symbolic processing, qualitative reasoning, geometric modeling, nonlinear

dynamics.

Thesis Supervisors: Harold Abelson and Gerald Jay Sussman



To my parents



Acknowledgments

Many people have contributed to my intellectual growth and the preparation
of this thesis. I am especially grateful to the following people.

Gerald Jay Sussman, my thesis supervisor, for his unending support throughout
these years, for being a constant source of inspiration, and for his encouragement
for pursuing scholarly perfection. Gerry has taught me that work and fun can be
combined into one.

Harold Abelson, my thesis supervisor, for teaching me mathematical thinking
and for his excellent critique of my writing. Hal has helped me debug and clarify
many of the ideas of this thesis.

George Verghese, my thesis reader, for providing good advice and critical feed-
back throughout my thesis project.

David Waltz, my thesis reader, for helpful discussions and his advice on my

professional career.
Paul Penfield, my academic counselor, for his encouragement and advice on my

graduate studies.
Rich Zippel (now at Cornell) and .John Wyatt, for unfaltering faith in my work

since the first year of my graduate study at MIT; Richard Thornton, for introducing
me to the maglev application; Weiping Li, for teaching me essentials of nonlinear
control; John Guckenheimer, for teaching me dynamical systems theory while I
was visiting the Center for Applied Mathematics at Cornell in the summer of

1990; Bob Hermann, Marc Raibert, Elisha Sacks, and Jean-Jacques Slotine for
helpful discussions.

Franklyn Turbak, for being a wonderful friend and a source of fun; Mark Shel-
don and Pierre Jouvelot for providing kindly distraction from my work; Andy
Berlin, Mike Eisenberg, Chris Hanson, Bill Rozas, Liz Bradley, Becky Bisbee, and
other members of MIT Project on Mathematics and Computation for making the

Lab a fun place to work.
Ken Yip and Arthur Gleckler for being wonderful officemates over the years

and for stimulating discussions.

And most of all, Ying Yin, for her love and encouragement through all these
years. This thesis would never have been completed without the moral support

and love from my family.



This thesis describes research done at the Artificial Intelligence Laboratory of

the Massachusetts Institute of Technology, supported in part by the Advanced

Research Projects Agency of the Department of Defense under Office of Naval Re-

search contract N00014-89-J-3202, and in part by the National Science Foundation

grant MIP-9001651. The author was also supported by a Chu Fellowship through

the MIT Graduate School.



Contents

1 Introduction 1
1.1 Contributions ....... .............................. 2
1.2 Goal: Mechanizing Control Design ...... .................. 4

1.3 Limitations of Traditional Methods ....................... 5
1.4 Characteristics of the Approach of This Thesis ................ 6
1.5 What the Control Engineer's Workbench Does ................ 7

1.6 Organization of the Thesis ............................ 10

2 The Control Engineer's Workbench 11

2.1 Reasoning About Control Design ........................ 11
2.2 A Real Scenario with the Workbench ..................... 14

2.3 Overview of the Workbench ...... ...................... 17

2.3.1 Design requirements ...... ...................... 17
2.3.2 Anatomy of the Workbench ........................ 19

3 Automatic Phase-Space Modeling and Analysis - MAPS 24

3.1 Introduction ........ ............................... 24

3.2 Qualitative Phase-Space Structures ........................ 26
3.2.1 Equilibria, limit cycles, and stability regions ............ 26

3.2.2 Trajectory flows ............................... 28
3.3 Automated Qualitative Analysis of Phase-Space Structures ..... .29

3.3.1 Theoretical characterization of stability regions ......... 30

3.3.2 Extracting and representing shapes of stability regions . . . 31

3.3.3 Modeling trajectory flow pipes ..................... 41
3.4 The MAPS Analysis Algorithm .......................... 47

3.4.1 The algorithm ................................. 47
3.4.2 The main illustration ............................ 50

v



3.4.3 Implementation details ........................... 58

3.4.4 More examples ....... ......................... 58

3.4.5 Hierarchical extraction and representation of phase-space in-

formation ....... ............................ 61

3.5 Discussion ....... ................................ 63

3.5.1 Scope of the analysis ............................ 63

3.5.2 Extensions ................................... 65

3.5.3 The use of MAPS in visualization ................... 66

3.6 Summary of the Chapter .............................. 66

4 Automatic Phase-Space Control Synthesis - Phase Space Navi-

gator 68

4.1 Introduction ........ ............................... 68

4.2 Automatic Control Synthesis in Phase Space ................. 69

4.2.1 Overview of the Phase Space Navigator ............... 69

4.2.2 Intelligent navigation in phase space ................. 69

4.2.3 Planning control paths with flow pipes ................ 70

4.3 The Phase Space Navigator ...... ...................... 72
4.3.1 Reference trajectory generation ..................... 72

4.3.2 Reference trajectory tracking ..... ................. 74

4.3.3 The autonomous control synthesis algorithms ........... 76

4.3.4 Discussion of the synthesis algorithms ................ 78

4.4 An Example: Stabilizing a Buckling Column ................. 81

4.4.1 The column model ...... ....................... 82

4.4.2 Extracting and representing qualitative phase-space struc-

ture of the buckling column ........................ 84

4.4.3 Synthesizing control laws for stabilizing the column ..... .85

4.4.4 The phase-space modeling makes the global navigation possible 92

4.4.5 Other control problems .......................... 95

4.5 Summary of the Chapter ............................. 95

5 An Application: Design of a Maglev Controller 97

5.1 Introduction ........ ............................... 97
5.2 The Maglev Model ....... ........................... 98

5.3 State-Space Control Trajectory Design ..................... 100

5.3.1 Modeling state-space geometry ..................... 100

vi



5.3.2 Synthesizing a global stabilization law ................ 101

5.3.3 Evaluating the control design ..................... 106

5.3.4 Visualizing the design ...... ..................... 108

5.3.5 Implementation of the controller .................... 108

5.4 Summary of the Chapter .............................. 112

6 Related Work 113

6.1 Qualitative Analysis of Dynamics ........................ 113

6.2 Engineering Stability Analysis .......................... 115

6.3 Phase-Space Nonlinear Control .......................... 115

6.4 Intelligent Control ....... ........................... 117

7 Conclusions 119

7.1 Thesis Revisited .................................... 119

7.2 Problems and Future Work ............................ 120

7.3 Broad Implications ....... ........................... 122

7.4 Towards A Language for Computational Control Design ....... .123

7.5 The Big Picture .................................... 124

A Maglev Application: Equilibria 126

B Maglev Application: Synthesized Reference Trajectories 127

vii



List of Figures

1.1 The high-level description of the control design for a maglev sys-

tem, automatically generated by the Workbench: (a) a projection

of the controllable region showing several synthesized reference tra-

jectories and the operating equilibrium; (b) a graphical rendering of

the controllable region; (c) a symbolic summary characterizing the

system and the control design ............................ 9

2.1 The phase plane of the buckling column (from Abraham & Shaw

1988) ........ ................................... 13

2.2 Engineer Input: the model for a buckling steel column ........ .. 14

2.3 Workbench Output: a symbolic summary of the analysis ....... .15

2.4 Workbench Output: the phase portrait of the buckling column

showing equilibrium points, boundaries of stability regions, and a

flow pipe leading to the left-hand attractor .................. 16

2.5 Engineer Input: the control objective ...................... 16

2.6 Workbench Output: the control reference trajectory and the control

law for stabilizing the column. In the plot, the reference trajectory is

drawn in solid lines, and the flow-pipe boundaries of the uncontrolled

column in dashed lines ................................ 18

2.7 The structure of the Workbench .......................... 21

2.8 The flow of computation in the Workbench .................. 23

3.1 Equilibrium points: (a) attractor, (b) repellor, and (c) saddle. . . 27

3.2 A stability region (basin of attraction) for an attractor in a 2nd-

order system ...................................... 28
3.3 A trajectory flow .................................... 29

3.4 Stability boundaries for an attractor: (a) non-degenerate boundary

- separatrix; (b) degenerate boundary ..................... 32

viii



3.5 The stability boundary for an attracting limit cycle .......... .. 33

3.6 A Delaunay triangulation over a set of points in a plane ....... .. 36

3.7 Circumcircle properties of exterior triangles vs. interior ones: (a) a

region with smooth shape; (b) a region with narrow-parts ...... .39

3.8 Grouping trajectories into flow pipes: (a) a collection of trajectories

with the same qualitative feature; (b) a corresponding flow pipe... 43

3.9 Classifying faces of simplices with respect to flows ........... ... 44

3.10 Construction of flow pipes: (a) grouping simplices to form a mono-

tonic polyhedron by canceling common non-monotonic faces; (b)

aggregating monotonic polyhedra to form a flow pipe according to

flow directions at the boundaries .......................... 45

3.11 Topological shapes of flow pipes .......................... 47

3.12 The flow chart of MAPS ............................... 49

3.13 The main illustration: the vector field of a 2nd-order nonlinear system. 51

3.14 The main illustration-MAPS output: (a) equilibrium points; (b)

boundary and connecting trajectories. (to be continued) ........ 53

3.15 (cont'd) The main illustration-MAPS output: (c) points on the

stability boundary for one of the attractors; (d) triangulation of the

convex hull ........................................ 54

3.16 (cont'd) The main illustration-MAPS output: (e) polyhedral ap-

proximation to the stability region computed from the triangulation

on boundary points; (f) two flow pipes computed from the refined

triangulation. The flow pipes form the stability region ........ .. 55

3.17 The main illustration: the relational graph constructed by MAPS. 56

.3.18 The main illustration-MAPS output: a symbolic summary..... .57

3.19 The analysis of a 3rd-order nonlinear system: (a) projection of sta-

bility boundary and connecting trajectories in x-z plane; (b) pro-

jection of polyhedral approximation in x-z plane .............. 60

3.20 A 2nd-order system with a saddle connection ................. 62

3.21 A multi-layered representation for a dynamical system used in MAPS. 63

4.1 Search for a control path from an initial point to a goal point in a

stack of phase portraits ................................ 71

4.2 The Phase Space Navigator ...... ...................... 72

4.3 Reference trajectory generation ...... .................... 73

4.4 Reference trajectory tracking ...... ..................... 75

ix



4.5 The flow char,, of the trajectory planning algorithm of the Phase

Space Navigator .................................... 79
4.6 Buckling of a thin elastic steel column due to axial enld loads. . .. 82

4.7 The buckling column: the phase space of a buckling column showing
the stability boundaries and connecting trajectories. The horizontal
axis x is the characteristic measure of the column displacement from

its principal axis and the vertical axis x' is the velocity ........ .83

4.8 The buckling column: the flow pipe leading to the attractor on the

left ............................................. 85
4.9 The flow-pipe graph for the buckling column ................. 87

4.10 The goal projection and the deformation of the trajectory ...... .88
4.11 The synthesized control law that stabilizes the buckling column:

(a) the reference trajectory that leads to the unbuckled state corre-

sponding to the saddle at the origin. The column is initially buck-

ling with sufficient velocity; (b) the position x of the column plotted

against time t. (to be continued) ...... ................... 90
4.12 (cont'd) The synthesized control law that stabilizes the buckling

column: the velocity v(= x') of the column and the control signal u

for stabilizing the column are plotted against time t in (c) and (d),

respectively ....................................... 91
4.13 The synthesized control law for restoring the column from the buck-

led state: (a) the reference trajectory that swings the column out of

the buckled state; (b) the position x of the column plotted against

time t. (to be continued) .............................. 93
4.14 (cont'd) The synthesized control law for restoring the column from

the buckled state: the velocity v(= x') of the column and the control
signal u for controlling the column are plotted against time t in (b)

and (c), respectively .................................. 94

4.15 The mechanical model for an overhead crane unloading cargo from
ships, reproduced from [Sakawa&Shindo, 1982]. The crane is equipped

with a trolley drive motor and a hoist motor. The planar motion of

the load is modeled as a swinging pendulum hanging at the moving

trolley ........................................... 96

x



5.1 EMS maglev system for high-speed ground transportation, repre-

senting a simplified drawing of the German Transrapid design. (a)

Electromagnetic suspension (from [MTAC Report 1989]); (b) De-
tail of a suspension magnet, superimposed on the field distribution

(from [Eastham 1989]) ................................ 99

5.2 Stable and unstable manifolds of the saddle for Vi = 140 (yz-

projection) ....................................... 102
5.3 Stable and unstable manifolds of the saddle for Vi = 300 (yz-

projection) ....................................... 103
5.4 The sandwiched region in yz-projection .................... 104

5.5 The boundaries of the sandwiched region in yz-projection: (a) top
boundary; (b) side boundary; (c) bottom boundary .......... .105

5.6 The synthesized control reference trajectories originating from four
different initial states, together with the controllable region: (a)

yz-projection; (b) zx-projection .......................... 107

5.7 Simulation of the nonlinear control design for different initial dis-

placements. (to be continued) .......................... 109
5.8 (cont'd) Simulation of the nonlinear control design for different ini-

tial displacements ................................... 110
5.9 The controllable region for the maglev control design, rendered with

the light source straight on. Hidden faces and lines are removed... Ill

xi



List of Tables

3.1 The internal representation of phase-space data objects ........ 59

xii



Chapter 1

Introduction

The purpose of computing is insight, not numbers.

- R. W. Hamming

Synthesis and analysis of control systems for complex physical systems are

difficult tasks. Complex systems operate in large nonlinear regimes; they often

comprise many components and contain a large number of state variables. Linear

systems have been well studied, and there are systematic design procedures for lin-

ear control systems. On the other hand, nonlinear systems are far less understood.

Nonlinear control synthesis is limited by the lack of available control schemes and

analysis techniques; traditional design and analysis are seldom applicable to these

systems.

Powerful computers can help engineers and scientists unveil the intricacies of

nonlinear phenomena and can revolutionize the design of complex, high-performance

control systems. The computational exploration of nonlinear systems has drasti-

cally changed the way we think about the world. This opens the possibility of

simulating and designing physical systems, without resorting to linear approxima-

tions.

Yet despite advances in computer technology, nonlinear control systems are

still difficult to design and analyze. The difficulties arise from the lack of design

methodologies that actively exploit the special nature of nonlinearities, and from

the lack of high-level computational tools that can harness the available compu-

tational power. Few nonlinear systems admit closed-form solutions. The ability

to understand and control these systems requires extensive numerical simulations.

The burden of the task is on human engineers to carefully design experiments, to



distill qualitative information from numerical simulation results. and to use tile

information to design appropriate control actions. This manual. numerical ap-

proach is burdensome and error-prone, and severely limits the design space one

can explore.

The modern geometric theory of dynamical systems, pioneered by Poincar6

at the beginning of the century, provides a qualitative way to describe the rich

dynamical behaviors of nonlinear systems. The geometric representation forms

a viable substrate for computationally analyzing qualitative aspects of dynamics

and exploring novel control-synthesis strategies. Programs that employ powerful

symbolic and numerical techniques have already shown promise in the geometric

analysis of nonlinear dynamical systems [2].

However, the phase-space geometry and topology of a dynamical system are

hard to describe in a way that allows for efficient computational manipulations for

the purpose of control design. Nonlinear systems can have extremely convoluted

phase-space geometries; the complexity becomes much worse as the dimensional-

ity increases. Humans can comfortably picture and manipulate two and three-

dimensional objects with the aid of graphic, geometric modeling techniques. For

higher-dimensional systems, however, few visualization and manipulation tools ex-

ist. Automatic modeling, analysis, and design tools are necessary to identify,

extract, and reason about the spatial properties of phase space.

1.1 Contributions

This thesis demonstrates that difficult control synthesis tasks can be automated,

using a computational workbench consisting of programs that actively exploit

knowledge of nonlinear dynamics and phase space. These programs combine pow-

erful numerical and symbolic computations with spatial reasoning techniques. The

thesis contributes to the state of the art in artificial intelligence and control systems

engineering in several ways:

* The thesis has developed a qualitative representation for complex behav-

iors of dynamical systems in phase space and a design language for com-

putationally expressing and manipulating these behaviors. The qualitative

representation captures the gross aspects of dynamics in a relational graph

of phase-space structure and a set of discrete objects called flow pipes-the

2



equivalence classes of behaviors. The design language describes a control de-
sign task in terms of well-defined geometric, combinatorial operations on the

flow pipes. This language helps formalize aspects of implicit expert reasoning
of control engineers in solving control design problems. The representation

and the language are developed independently of the orders of systems, i.e..

the dimensionality of phase spaces.

"* The thesis has constructed a computational environment, the Control En-

gineer's Workbench, integrating a suite of programs that automatically

analyze and design high-performance, global controllers for a large class of
nonlinear systems. These programs combine powerful techniques from nu-

merical and symbolic computations with novel representation and reason-
ing mechanisms of artificial intelligence. The two major components in the

Workbench-the Phase Space Navigator and MAPS'-work together to vi-
sualize and model the phase-space geometry and topology of a given system.

They reason about and manipulate the phase-space geometry and topology
and search for optimal control paths connecting initial state and the desired

state for the system. The 'Workbench represents the result of design and

analysis in a symbolic form manipulable by other programs, and produces

a high-level summary meaningful to professional engineers. It also presents
the result in a graphical form.

" The thesis presents a novel phase-space design methodology for the syn-
thesis of automatic controllers. The design methodology computationally
exploits dynamical systems' nonlinearities in terms of phase-space geome-

tries and topology. It designs a prespecified control law-control reference

trajectories-for a system by synthesizing the desired shape for phase-space

geometry dictating trajectory flows. It uses the novel technique of flow pipes
to group infinite numbers of distinct behaviors into a manageable discrete set

that becomes the basis for establishing reference trajectories, and navigates
the system along the planned reference trajectories. The phase-space design

approach requires powerful computational tools that are able to identify, ex-
tract, represent, and manipulate qualitative features of phase space, and is

embodied in programs comprised in the Workbench.

' MAPS stands for Modeler and Analyzer for Phase Spaces.

3



o The thesis has demonstrated the Workbench and the phase-space design

methodology in an application of great practical interest: the Workbench

helped design a high-quality controller for a magnetic levitation system-the

German Transrapid system. The control system synthesized by the Work-

bench stabilizes a maglev vehicle with much larger initial displacements than

those allowed in a previous linear design for the same system using classical

linear feedback technique. The simulation shows that our design outperforms

the linear design by a factor of 20. Professional control engineers consider

this result important enough to present at the 31st IEEE Conference on

Decision and Control [56].

1.2 Goal: Mechanizing Control Design

A real-world control system is a complex closed-loop system with extremely rich

dynamics. Computation and reasoning are pervasive in the design and operation

of the controller. Sensors collect a large amount of quantitative information. State

and parameter estimators infer hidden information about the system from the

sensed data. The system is modeled with a representation appropriate for further

analysis and design based on available information. The model is then analyzed

to extract behaviors that are judged significant for the control objective. To meet

the control objective, a control law is synthesized to change the natural dynamics

of the system.

The domain of automatic control brings together issues of sensing, estimation,

control synthesis, and control execution. The study of their common themes-

computation and reasoning-serves as a framework for coherently addressing

these issues and makes it possible to employ advanced computational techniques

to drastically improve modern control design. This thesis focuses on the control

synthesis.

A control engineer goes through the following design steps to synthesize a

controller for a given physical system:

1. Modeling: translate the physics and the constraints of the physical system

into a quantitative mathematical model.

2. Analysis: analyze the model of the system.

:3. Design: design a controller for the system.

4



4. Verification: verify the control design. Iterate Steps 2-4 if necessary.

5. Implementation: implement the control design in software or hardware.

In the above control design procedure, Step 1 models the system, usually with a

set of differential equations. Step 2 examines the model and analyzes the behaviors
of the system. Based on the analysis, Step 3 arrives at a control design according
to the prespecified control constraints. Step 4 ensures that the design meets tile

control specification. The last step implements the control design to control the real

physical system. The Steps 2, 3, and 4 are often iterated before a reasonable control
law is synthesized. Except for very few cases in which analytic-form solutions are

available, computer simulations are the main tools for analyzing the systems and

for designing and verifying the controllers.

The task of control design and analysis requires powerful knowledge rep-
resentation and reasoning mechanisms and computer simulation tech-
niques. The mechanization of this task and the exploration of novel

control design methods are the subjects of this thesis research.

1.3 Limitations of Traditional Methods

We are interested in developing a computational design method suitable for dealing
with the complexities of real-world nonlinear control systems and in mechanizing

the design process by computer programs. Traditional methods relying on purely
analytic or numeric techniques or on linear design theory are inadequate for car-

rying out and automating the design process.

Systematic techniques for control design of linear systems have been well de-
veloped. Controllers for linear systems can be synthesized via methods such as

pole-placement or Bode diagrams [35], with satisfactory performance. However,
complex control systems operate in larger regions where system nonlinearities are

too significant to ignore. These nonlinear control systems do not lend themselves
easily to linear (small signal) analysis and design. There have been attempts to

extend linear control techniques to nonlinear control systems: a piecewise-linear
control design, also called gain scheduling, approximates a nonlinear function with
several linear pieces, each of which admits a linear control design. For example,

in aircraft autopilot design, an airplane system model is linearized around several



hundred operating points selected within the plane's operating region. Each oper-

ating point is subject to a linear controller design. However, this type of control

can be very expensive and complex in both design and implementation. For a

highly nonlinear system operating in a large region, an enormous number of lin-

earizations and controller designs have to be carried out. The complexity and the

cost of conventional implementations prohibit many practical applications.

The computational method developed in this thesis designs a nonlinear control

system in phase space. Unlike gain scheduling, our method explicitly models and

actively exploits the nonlinearities in terms of trajectory flows and can carry out

control design automatically. Although phase space is an extremely useful medium

for exploring novel nonlinear design methods, the phase-space design approach

requires sophisticated computational techniques and representational mechanisms

to make the approach computationally feasible.

Existing control simulation softwares are inadequate for automatically design-

ing highly complex nonlinear systems. Commercially available programs like MAT-

LAB and SIMULAB [30] rely on numerical simulations. These programs are, at their

very best, semi-automatic and serve as interactive design aids to human engineers.

Although they are equipped with elaborate graphic interfaces, these programs

provide only fragmented, limited capabilities such as integrations and equilibrium

determination for performing the simulation task; human users need to prepare the

simulation and to interpret the result. The specialized control toolboxes embedded

in these programs are "shallow" expert systems; they lack deep domain knowledge

and do not have mechanisms for computationally representing and manipulating

a control design.

1.4 Characteristics of the Approach of This Thesis

The computational approach presented in this thesis has the following character-

istics: it can analyze and design nonlinear, global control laws; it is autonomous;

and its development is independent of the order of a system.

Our approach exploits the richness of nonlinear dynamics and phase-space rep-

resentations. For example, the programs use the flow pipes to explore a variety

of control paths otherwise difficult to obtain with just a piecewise linearization.

Our approach designs control trajectories from a global point of view and thereby

maximizes the effect of control actions to obtain good performance.
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The programs embody significant knowledge of dynamical systems theory and

control theory. Because of their autonomous nature, the programs can perform

certain tasks that human counterparts have difficulty with, for instance, the task

of visualizing and manipulating complicated high-dimensional geometric objects.

The machinery for geometric modeling is developed independently of the spatial

dimensionality. Hence the programs are not restricted to low-order systems, as

long as the computational complexity allows.
These programs are mostly useful in synthesizing high-performance control

systems that do not lend themselves to traditional design and analysis techniques.

On the other hand, the qualitative analysis could also assist engineers in exploring

novel control design methods. Aside from the utility of these programs, this thesis
formulates the task of control design in a computational way; this formulation

provides a concrete substrate and a rich domain for exploring and developing new

reasoning and representation techniques otherwise hard to grasp in traditional

computer science and artificial intelligence research.

1.5 What the Control Engineer's Workbench Does

Given a model of a physical system and a control objective, the Control Engineer's
Workbench analyzes the system and designs a control law achieving the control

objective. A user typically interacts with the Workbench in the following way.

The user first tells the Workbench about the system: he inputs a system model
in terms of a differential equation, parameter values, and bounds on state variables
for analysis in the form of a phase-space region. The user also tells the Workbench

about the requirements on the control design: he specifies the desired state for the

system to settle in, the initial states of the system, the allowable control parameter
values, and the constraints on the control responses.

The user then asks the Workbench to analyze the system within the parameter
ranges of the model. The Workbench visualizes the totality of the behaviors of

the system over the parameter ranges; it represents the qualitative aspects of the

system in a data structure and reports to the user a high-level, symbolic summary
of the system behaviors and, if necessary, a graphic visualization of the phase-space

qualitative features.

Next, the user instructs the Workbench to synthesize a control law for the sys-
tem, subject to the specified design requirements. The Workbench searches for

7



the global control paths that connect the initial states of the system and the de-

sired state, using the qualitative description about the system. More specifically.

the search is conducted in a collection of discrete entities representing trajectory
flows in phase space. After the global control paths are established, the Work-

bench determines the controllable region of the system and the switching surfaces

where control parameters should change values. A synthesized control reference

trajectory consists of a sequence of trajectory segments, each of which is under
a constant control. For a point-to-point control design, the Workbench further

constructs a smoothed trajectory connecting an initial state and the desired state.

The Workbench has designed a high-performance nonlinear control law for an

electro-mechanical system of practical interest-the stabilization of the German

Transrapid magnetic levitation transportation system. The details of this design

will be described in Chapter 5. Here, we briefly illustrate what the Workbench

does in this application.

The train and guideway system of the Transrapid is described by a third-order

nonlinear differential equation:

( dx __• • +
dt - Lozo

dz
-• g

Ensuring smooth ride-quality for passengers is one of the top priorities in the

design of the Transrapid system. Unfortunately, the system is unstable at the

operating equilibrium for parameter Vi at 140 volts. The objective of the control

design is to synthesize a control law that stabilizes the system at the operating

equilibrium.

However, the stabilization control of the train, typically traveling at about 350

miles per hour along the guideway subject to various disturbances, is a very difficult

task, for the system operates in a large operating region where nonlinearities come

from the geometries of the train and the guideway and from the magnetic forces.

The system requires a high-quality global stabilization design.

The Workbench is given the system equation in a symbolic form, the ranges

of parameter values, a bounding box in phase space, and the control objective.

It analyzes the behaviors of the system for the given parameter values and syn-

thesizes a controllable region about the previously unstable operating equilibrium;

the region is maximum with respect to the allowable control authority.
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<equilibrium-points:

equilibrium 1. (saddle at (140. 0. 200.))>

<flow-pipes:

flow-pipe 1. (from *infinity* to *infinity*)

boundary: (2D-manifold)

flow-pipe 2. (from *infinity* to *infinity*)

boundary: (2D-manifold)>

<controllable-region:

interior: 831 tetrahedra

boundary: 526 triangles

volume: 0.848

range-of-control: (140 300)

number-of-switching-surfaces: I

maximum-displacement-z: 0.00455>

(c)

Figure 1.1: The high-level description of the control design for a maglev system,

automatically generated by the Workbench: (a) a projection of the controllable

region showing several synthesized reference trajectories and the operating equilib-

rium: (b) a graphical rendering of the controllable region: (c) a symbolic summary

characterizing the system and the control design.
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The Workbench reports the results of the analysis and the control design in a

graphic and symbolic description in Figure 1.1. Tile description contains graphic

displays of the controllable region showing the region boundary, the equilibrium.

and synthesized control reference trajectories from sampled initial states; it also

characterizes the behaviors of the system and the controllable region ill a symbolic

form. Although the pictures shown here are in black-and-white, the actual screen-

display for the region produced by the Workbench is in color. The result of this

application has been presented to professional control engineers and been favorably

compared with a previous manual, linear design for the system [56].

1.6 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 first gives all overview of the Control Engineer's Workbench. The

bulk of the thesis is then divided into three parts: Chapter 3 develops an analysis

method, MAPS, for constructing qualitative representations of dynamics in terms

of asymptotic behaviors and equivalence classes, i.e., the flow pipes; Chapter 4

presents Phase Space Navigator for the synthesis of control laws in phase space.

The Phase Space Navigator searches for optimal control trajectories in a collec-

tion of flow pipes forming a flow-pipe graph. Chapter 5 applies the machineries

developed in Chapters 3 and 4 to an engineering problem of practical interest: the

design of a global, nonlinear controller for the stabilization of a magnetic levita-

tion transportation system. Finally, Chapter 6 describes other related work in the
computational analysis and design for control systems, and Chapter 7 concludes

the thesis with a summary and future work in the area.

Although the domain this thesis studies is control design, readers with knowl-

edge of linear algebra, elementary differential equations, and an introductory to

linear systems or control will be able to go through the thesis with little difficulty.

I have included necessary background materials on dynamical systems theory and

control theory to make the thesis self-contained.
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Chapter 2

The Control Engineer's

Workbench

This chapter gives an overview of the Control Engineer's Workbench-an imple-

mented computational environment for analyzing and designing dynamical control

systems in phase space. The Workbench, consisting of a suite of programs, allows

engineers to visualize the phase-space structures of the systems, to manipulate the

dynamics, and to synthesize controllers.

2.1 Reasoning About Control Design

How does a control expert reason about a control design task? A professional

control engineer uses a body of specialized knowledge to carry out the design.

The engineer develops insight through an analysis of the physical system, uses the

insight to explore the design space constrained by control requirements, and makes

engineering judgment about design choices and trade-offs. A particularly intuitive

design method is the phase-plane method for analyzing and designing a 2nd-order

nonlinear control system in a phase plane [35].
Let us consider an example of the deformation of an elastic column. Putting

a weight on top of the column, the column oscillates around its principal axis.

Putting a heavier weight, the column oscillates and settles to a buckled state

after a short while. How would an engineer analyze the behavior of the system

and design a control law to stabilize the buckling motion with the phase-plane

method?

The engineer first describes the system with a mathematical model. Compiling

11



the dynamics into a suitable model is a nontrivial task. Discussion of model build-

ing is outside the scope of this thesis. We assume that the engineer is given a simple

model for the column in the form of an equation of motion, a 2nd-order nonlinear

ordinary differential equation. Starting with the model and a set of typical pa-

rameter values, the engineer determines all possible responses of the system within

certain ranges of amplitudes and input signals. The responses with different initial

conditions from the simulation are then plotted in a two-dimensional plane-the

phase plane (Figure 2.1). A state, a pair of position and velocity, is plotted as a

point in the plane. A trajectory consists of a sequence of consecutive states and is

drawn as a one-dimensional curve. With this graphical plot, the engineer identifies

the natures and locations of critical points. He then inspects the gross features of

trajectories: the trajectories approach two critical points in spirals, respectively.

The engineer groups the trajectories into two classes, each of whichi corresponds

to those approaching the same critical point. The phase plane gives a qualitative

picture of the system responses. The shaded region in the picture is the collec-

tion of trajectories going to the left-hand critical point, one of the buckled states.

The critical point at the middle of the picture is the unbent state of the column.

In order for the engineer to interpret the response-, he needs to know things like

system states, trajectories, critical points, and qualitative regions.

The buckling motion that leads the column to a buckled state traces out a

trajectory in the phase plane, for instance, a trajectory that starts at a location in

the shaded region and evolves to the left-hand critical point in Figure 2.1. Suppose

the engineer wants the column to return to its original unbent state after the oscil-

lation dies down, instead of letting it get buckled. He introduces a control input,

a force exerting on the column, and observes how the system responses vary with

the input. With the pictorial description of the responses, the engineer determines

a solution curve in phase space as a control law that moves the trajectory to the

middle critical point.

In short, the engineer goes through the following steps with the phase-plane

method:

"* simulate the system extensively with different initial conditions

"* plot the behaviors in trajectories on a piece of paper

"* interpret the result with visual inspection

12



Figure 2.1: The phase plane of the buckling column (from Abraham & Shaw 1988).

* design a control law to obtain desired behavior.

The phase-plane method is able to analyze the transient and asymptotic behav-
iors of planar systems, whether linear or nonlinear. Kalman had used this method

to design switching control laws based on the phase-plane plot [26]. His method
decomposes a phase plane into discrete linear regions, designs linear control law
for each region, and matches transients on the boundaries of the regions.

The phase-plane method is a useful tool for analyzing qualitative responses of
a control system. It is, however, manual, prohibitively expensive, and confined
to planes. Although the diagrammatical sketch of a phase plane illustrates just
the qualitative aspects of the system, to obtain a picture like this requires lots of

human effort in preparing numerical simulations, collecting the numbers, sketching
the results, analyzing the trajectory plot, and interpreting it in a qualitative picture
like Figure 2.1. Worse, this method becomes useless in cases when the order of a
system is greater than two and the nonlinearity results in convoluted phase-space
geometry. The mechanization of the task with autonomous computer programs
would alleviate many of these restrictions.
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name: buckling-column

Jdxl/dt = X2
equation-of-motion: dX2/dt - --Pil -- P2X - p3X 2 + U

state-variable: X1
state-variable: X2

parameter: P, = -2.0

parameter: P2 = 1.0

parameter: p3 = 0.2

parameter: u = 0.0

bounding-box: xi E [-3.0,3.0], X2 E [-4.0,4.0]

Figure 2.2: Engineer Input: the model for a buckling steel column.

2.2 A Real Scenario with the Workbench

The Control Engineer's Workbench automates a significant portion of the control
engineer's design task. In the following session, the Workbench autonomously

analyzes the buckling motion of a steel column under compression and synthesizes

a control law to stabilize the motion. The interaction between a human user and

the Workbench is annotated in explanatory italics for ease of reading.

* The engineer types in the model of the elastic column buckling

under axial compressive force and asks the Workbench to analyze
the system for the given parameter values (see Figure 2.02).

* The Workbench summarizes the qualitative behaviors of the sys-
tem in terms of equilibria, stability regions, and flow pipes (see

Figure 2.3).

The Workbench also displays the phase portrait of the system

showing the first flow pipe (see Figure 2.4).

e The engineer instructs the Workbench to design a control law that
stabilizes the buckling motion, in particular, a law that brings the

column back to the unbuckled state corresponding to the unstable

equilibrium at the center of Figure 2.4. He specifies the control

design requirements (Figure 2.5).
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<equilibrium-points:

equilibrium 1. (attractor at (1.41 0.))

equilibrium 2. (saddle at (0. 0.))

equilibrium 3. (attractor at (-1.41 0.))>

<trajectories:

<boundary-trajectories:

trajectory 1. (from *infinity* to (0. 0.))

trajectory 2. (from *infinity* to (0. 0.))>

<connecting-trajectories:

trajectory 3. (from (0. 0.) to (-1.41 0.))

trajectory 4. (from (0. 0.) to (1.41 0.))>>

<stability-regions:

stability-region 1.
attractor at *infinity*
stability-boundary: ()

connecting-trajectories: C)

stability-region 2.

attractor at (1.41 0.)

stability-boundary: (trajectory 2. trajectory 1.)

connecting-trajectories: (trajectory 4)

stability-region 3.

attractor at (-1.41 0.)

stability-boundary: (trajectory 2. trajectory 1.)

connecting-trajectories: (trajectory 3)>

<flow-pipes:
flow-pipe 1. (from *infinity* to (-1.41 0.))

boundary: (trajectory 2. trajectory 1. trajectory 3.)

flow-pipe 2. (from *infinity* to (1.41 0.))
boundary: (trajectory 2. trajectory 1. trajectory 4.)>

Figure 2.3: Workbench Output: a symbolic summary of the analysis.
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Figure 2.4: Workbench Output: the phase portrait of the buckling column showing
equilibrium points, boundaries of stability regions, and a flow pipe leading to the
left-hand attractor.

control-type: point-to-point

goal-state: (0.0, 0.0)

initial-state: (-1.0, -3.0)

range-of -control: u E [-0.2,0.2]

Figure 2.5: Engineer Input: the control objective.
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e The Workbench reports a synthesized control reference trajectory

(see Figure 2.6 for a phase-space illustration and a script of the

control law). The global portion of the reference trajectory shown

in the figure consists of four segments, each of which starts at a

switching state marked as a small circle. The control parameter

value is held constant for each segment and is denoted by U1, U2.

(13, or U4. The control law for the reference trajectory is rep-

resented as a sequence of tuples: (time, switching-state, control).

The control law invokes a local controller when the trajectory en-

ters the vicinity of the goal. The Workbench determines that the

control response time for the global portion of the reference trajec-

tory is less than 7 seconds.

2.3 Overview of the Workbench

In the previous session with the Workbench, the Workbench has demonstrated the

following capabilities:

"* Deciding what behaviors are significant. The Workbench looks for qualitative

features like equilibrium points, stability regions, and trajectory flows.

"* Describing the behaviors qualitatively in computational terms. The Work-

bench models the stability regions and trajectory flows geometrically.

"* Reasoning about a phase space with flow pipes.

"* Performing the control design autonomously.

These capabilities are supported in the Workbench by (1) qualitative represen-

tation consisting of dimension-independent constructs, (2) hierarchical extraction

of the behaviors, (3) modeling and manipulation mechanisms for flow pipes, and

(4) algorithms implementing the geometric, combinatorial, and numerical compu-

tations.

2.3.1 Design requirements

We motivate the design criteria for the Workbench with the intended task domain

of control synthesis and with computational considerations.
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;;The Synthesized Control Law: specifying the tine instance, switching;;state, and corr•esponding control value for each switching:

((time 0.) (switching-state #(-1 -3)) (control .2))

((time .284) (switching-state #(-1.82 -2.71)) (control 0.))

((time 1.06) (switching-state #(-1.86 2.49)) (control -. 2))

((time 2.71) (switching-state #(1.36 1.82)) (control 0.))

((time 6.76) (switching-state #(-.0023 -. 0692)) (control *local-control*))

Figure 2.6: Workbench Output: the control reference trajectory and the control

law for stabilizing the column. In the plot, the reference trajectory is drawn in solid

lines, and the flow-pipe boundaries of the uncontrolled column in dashed lines.
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e The design of the Workbench calls for a concise representation that captures

essential features of a control system. The representation should be sensible

to human engineers and manipulable by other programs. The Workbench

needs to present the result of its analysis and design to human designers

and to encourage the designers to interact with the design in a direct way.

This communication requires a high-level, intuitive presentation of the result.

Other programs in the Workbench need to efficiently access and manipulate
the representation. Instead of encapsulating everything about tile system,
the representation should contain only information that is useful for tile

control synthesis task. We have chosen a qualitative representation describing

a system in terms of its phase-space geometric features for this purpose.

e The Workbench needs modeling algorithms to efficiently construct the rep-

resentation. The algorithms should identify and extract implicit dynami-
cal properties from numerical explorations and summarize the result in the

qualitative form. In the implementation, the Workbench internally uses a hi-
erarchy of intermediate representations. The qualitative information about
the system is extracted in a step-by-step fashion, from local descriptions to

global ones.

e The Workbench also needs a reasoning mechanism to efficiently manipu-
late the representation for synthesizing a control law. The program searches
through the representation to find feasible control trajectories. The Work-
bench uses a graph mechanism that manipulates a discrete collection of ob-
jects called the flow pipes.

2.3.2 Anatomy of the Workbench

The Workbench analyzes and designs control systems in phase space. In the sce-

nario in Section 2.2, the Workbench locates equilibria and models stability regions;

it groups trajectories, i.e., behaviors, into the flow pipes; it constructs a dimension-
independent representation for the phase space; it designs control reference tra-
jectories with this representation. In addition, the Workbench communicates with
the user in high-level terms through an interface for inputting the model and for

describing the design and analysis and a graphic module for displaying the result.

Like the phase-plane analysis, the Workbench is able to reason about and ma-
nipulate dynamics in terms of phase-space geometries. It partitions a phase space
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into discrete regions. For the previous elastic column example, the program au-

tonomously explores the behaviors of the system and generates the high-level pic-

ture of the phase portrait in Figure 2.4. The picture contains essentially the same

kind of information as that of Figure 2.1.

But unlike the phase-plane method, the Workbench provides computational

means for manipulating the dynamics. It decomposes the phase space into sub-

regions that can even be globally nonlinear. The shaded region in Figure 2.4 is

approximated as a geometric polygon. The program internally represents the criti-

cal points and geometries of regions in a data structure that allows other programs

to manipulate, visualize, and communicate with human users. Because the geome-

try and topology of a system's phase space are modeled with a simplicial structure,

the representation and reasoning mechanisms for this structure are independent of

the dimensionality of phase space.

The Workbench serves as an intelligent assistant to control engineers. The

components of the Workbench are shown in Figure 2.7:

e the MAPS program for simulation and interpretation

e the Phase Space Navigator for control synthesis

e a graphic program for visualizing the design

* a user interface for communication with the system.

The component for model building is not in the Workbench yet. The programs in

the Workbench implement various algorithms: symbolic differentiation, numerical

algorithms on differential equations, numerical integrations, modeling of geomet-

ric structures, clustering of equivalence classes, graph algorithms, etc. The infer-
ence mechanism of the Workbench uses these programs to construct a qualitative

phase-space structure for representing a system, to check for the consistency of the

structure, and to reason about and manipulate the representation through a graph

of flow pipes.

The flow of computation within the Workbench is illustrated in Figure 2.8.

Given a model of a system, a bounded phase-space region of interest, allowable

parameter values, and control objectives and constraints, the Workbench performs

stability and trajectory flow analysis for the system in phase space and interprets

the result in a phase-space graph. The Workbench then explores the control space

to synthesize a desired control law subject to the design constraints. It reports
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Figure 2.7: The structure of the Workbench.

21



the control law specifying reference trajectories and performance properties. The
control design for steering towards an equilibrium is performed in this way: for
a point-to-point control, the output is a reference trajectory, whose control law
consists of a sequence of tuples of time, switching state and the corresponding
control value; if an initial operating region is given, the output is a controllable
region geometrically represented as a polyhedral structure. The steering towards
a limit cycle has not been implemented yet, although its implementation would
be very much the same in Poincar6 sections as the case for steering towards an

equilibrium.

The programs in the Workbench are written in Scheme, a dialect of LISP. The
Workbench is implemented on HP 700 series workstations. For moderately difficult

problems, for example, the buckling steel coluni example, it takes the Workbench
on the order of minutes to arrive at a control law.
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Figure 2.8: The flow of computation in the Workbench.
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Chapter 3

Automatic Phase-Space

Modeling and Analysis - MAPS

This chapter develops and demonstrates a computational method for automati-
cally analyzing qualitative behaviors of dynamical systems in phase space. We
will discuss the extraction and representation of the qualitative behaviors of a dy-

namical system in terms of a qualitative phase-space structure describing spatial
arrangement of geometric entities in phase space, a geometric construct called flow
pipe for modeling trajectory flows, an analysis algorithm and its implementation

in the MAPS program, and examples illustrating the mechanism of the analysis.

3.1 Introduction

Analysis of dynamical systems via phase-space geometric structures plays an in-
creasingly important role in experimenting, interpreting, and controlling complex
systems [1, 2]. Nonlinear systems usually fall outside the domain of traditional
analysis methods, such as Fourier analysis for linear systems. However, most of
the important qualitative behaviors of a nonlinear system can be made explicit in

phase space with a geometric analysis (391.
MAPS is a program for understanding and representing qualitative structures

of phase spaces. MAPS combines numerical, symbolic, and geometric compu-
tations with techniques of spatial reasoning. It embodies theoretical knowledge
about nonlinear dynamical systems and formulates in computational terms a sig-

nificant amount of informal working knowledge of professional control engineers in
analyzing complex control systems, in particular, in the form of the phase-plane
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method [35]. We will illustrate our techniques of extracting and representing the
qualitative phase-space features with two- and three-dimensional systems. The

techniques presented in this chapter also apply to higher-dimensional dynamical

systems.

Complex systems are often nonlinear and high dimensional. Our theoretical
knowledge about nonlinear dynamical systems is far from complete. Therefore,

many engineering applications rely on extensive numerical experiments. A numer-

ical simulation typically generates an immense amount of quantitative information
about a complex system. To interpret the numerical result and to use the in-

formation for engineering designs, it is essential to develop qualitative methods

that automatically analyze the system, extract the qualitative features, and rep-

resent them in a high-level description sensible to human beings and manipulable
by other programs. The representation for the qualitative behaviors needs to be

parsimonious and yet capture the essential properties of the dynamical system un-

der study. The task of control design discussed in the next chapter requires that

the representation facilitate efficient manipulation in synthesizing new dynamica:
behaviors. We have chosen an equivalence-class based qualitative representation

motivated by the above requirements on the form and use of the representation.

Our goal is to develop a class of intelligent and autonomous programs that
understand the behaviors of complex systems through their phase-space represen-

tations, synthesize control commands, and affect the physical processes. For ex-

ample, a controller that controls the locomotion of an autonomous walking robot

would monitor the state of the system, analyze the motion, and command the

motor to achieve a particular walking behavior. When these systems operate in

nonlinear regimes and are of high order, their complexities often defy human anal-
ysis. In order for the robot to autonomously execute control tasks with superior

performance, it is important that the robot understands the consequences of its

control action and synthesizes appropriate control commands to affect the state

of the system. We are particularly interested in automating the control analysis

and synthesis for a class of nonlinear systems that do not lend themselves easily

to traditional analysis and design techniques.
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3.2 Qualitative Phase-Space Structures

We are interested in representing the qualitative behaviors of dynamical systems

for control analysis and design. One useful qualitative representation of the phase

space of a dynamical system is in terms of equilibrium points and limit cycles,
stability regions, trajectory flows exhibiting the same qualitative features, and the

spatial arrangement of these geometric objects. We call this representation the

qualitative phase-space structure for a dynamical system and give the following

definition.

Definition 3.1 Qualitative phase-space structure: The qualitative phase-
space structure within a phase-space region of interest, for a structurally stable

dynamical system addressed in this thesis', consists of

(a) the number, positions, and stability types of equilibrium points and limit cy-

cles

(b) the geometric structures of stability regions (basins of attraction) associated

with the attractors

(c) the equivalence classes of trajectory flows

(d) the spatial arrangement of the equilibrium points, limit cycles, stability re-

gions, and trajectory flows.

3.2.1 Equilibria, limit cycles, and stability regions

We review some of the basic concepts in dynamical systems theory in order to

describe the qualitative phase-space structures. Let us consider a single pendulum
perturbed from its downward resting position. It swings around its vertical axis

with a smaller and smaller amplitude, and eventually settles to the resting position

due to friction. We call such a resting state a stable equilibrium point. We say that
an initial state of the pendulum is in the stability region of the stable equilibrium
point if the pendulum starting from that state eventually settles to the stable

equilibrium point. In this example, all initial states that the pendulum starts from
except for the vertically upward one are in the stability region.

'The scope of the class of systems is discussed in Section 3.5. 1.
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(a) (b) (c)

Figure 3.1: Equilibrium points: (a) attractor, (b) repellor, and (c) saddle.

In general, the equilibrium points of a dynamical system x' = f(x, u), where u

is a parameter, are the zeros of the vector field f(x, u) : R' -- RW'. Structurally

stable systems [18] can have equilibrium points of three types: attractor, repellor,

and saddle, whose local behaviors in phase spaces are shown in Figure 3.1. An

attractor is an equilibrium point that all nearby trajectories approach in forward
time. In the pendulum example, the downward resting state is an attractor. We

call the attractor an asymptotically stable equilibrium point. A repellor is the one
that repels all nearby trajectories. One can think of it as an attractor in reverse

time. Trajectories approach a saddle in some directions and leave it in the other
directions. The vertically upward state of the pendulum is a saddle. Start the
pendulum resting at this position. A slight perturbation would move it from the

position. On the other hand, the pendulum with just the right amount of energy

could swing to the upward position and rest there, although it will be extremely

rare and will take an infinite amount of time to do so. We call the repellors and
saddles unstable equilibrium points. The study of equilibria plays a central role

in dynamical systems theory. The equilibrium points, together with other phase-
space entities, partition a phase space into qualitatively different subregions. The

attractors are the only kind of equilibria that can be observed physically; they
characterize the asymptotic behaviors of dynamical systems. The other classes of

steady-state behaviors addressed in this thesis are limit cycles.

The important concept of stability is associated with the stability regions. The
collection of trajectories approaching an equilibrium point is called the stable tra-

jectories (or stable manifold) of the point; and the collection of trajectories leaving

an equilibrium point is called the unstable trajectories (or unstable manifold) of the
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Figure 3.2: A stability region (basin of attraction) for an attractor in a 2nd-order

system.

point. A saddle has stable trajectories along some directions and unstable trajecto-

ries along the other directions. The union of the stable trajectories of an attractor
is its stability region, often called the basin of attraction for the attractor. The
stability region of an attractor is open. Every trajectory starting in the stability
region will be attracted to the attractor, by definition. Attractors cannot be on
the boundary of the region. The region may be either bounded or unbounded; it is
unbounded if the boundary contains no repellors. An example of a stability region
is shown in Figure 3.2.

3.2.2 Trajectory flows

Most nonlinear systems do not have solutions that can be expressed in closed
form. Analysis of such systems often resorts to computational exploration of their
trajectories over a period of time. Since a phase space is a union of an infinite
number of trajectories, an exhaustive search for plausible control paths in the
space of all the trajectories is computationally too expensive and numerically too
sensitive to uncertainties. To make it possible to find good control paths, we bundle
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Figure 3.3: A trajectory flow.

together trajectories with similar qualitative features into a trajectory flow.

The trajectory flows describe the collective shape and direction of the trajecto-
ries. Figure 3.3 shows, for example, a trajectory flow in the phase space consisting

of all trajectories ending at the same destination marked by the symbol +.

With the trajectory flow bundle representation of the phase space, the explo-

ration is constrained in a much smaller space of equivalence classes of trajectories.

The expensive fine-grain search in phase space, possibly of high dimensions, is
avoided. Furthermore, the flow bundle is a natural representation with respect

to the robustness to the effect of noise and uncertainties, compared with individ-

ual trajectories. The effect of noise on an individual trajectory is modeled by

thickening the trajectory.

3.3 Automated Qualitative Analysis of Phase-Space Struc-

tures

MAPS understands qualitatively different regions and extracts and represents geo-

metric shape information about these regions. Given a dynamical system specified
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as a system of governing equations, MAPS generates a high-level symbolic de-

scription of the phase-space structure as the result of the analysis. The high-level

description will be used as input to other programs for further computations. for

example, for synthesizing control laws in the next chapter.

3.3.1 Theoretical characterization of stability regions

An essential part of the stability analysis for a dynamical system is the determina-

tion of the boundaries of stability regions-the stability boundaries. Our algorithm

for determining stability boundaries is based on a crucial theoretical result char-

acterizing the stability boundaries of a fairly large class of dynamical systems2.

Under certain weak conditions to be discussed in Section 3.5.1, the result of Chi-

ang et al. [10] shows that the stability boundary for an attractor consists of the

stable trajectories (stable manifold) of equilibrium points and limit cycles whose

unstable trajectories (unstable manifold) approach the attractor. This allows us to

numerically determine a collection of trajectory points on the stability boundary

through calculations of the stable and unstable trajectories3 . In planar systems,

the boundaries consist of curve segments obtained from trajectories. In higher

dimensions, the boundary surfaces are swept out by a set of trajectories on the

boundary. The following theorem establishes the theoretical basis for the stability

analysis of the algorithm.

Theorem 3.1 Characterization of stability boundaries for attractors [Chi-

ang et al. [10]]: For nonlinear autonomous dynamical systems satisfying certain

conditions, the stability boundary for an attractor is the union of stable manifolds

of equilibrium points and limit cycles, whose unstable manifolds approach the at-

tractor.

The three conditions that the systems have to satisfy will be discussed later

in the thesis. The equilibria that can be on the stability boundaries are saddles

and repellors. A boundary that separates stability regions for different attracting

sets is called a separatrix. A degenerate boundary is one that does not separate

stability regions.

2Our algorithm does not use Liapunov functions to construct stability regions. The class of

Liapunov function based methods will be discussed in Section 6.2.
3The trajectory points can be obtained, for example, from numerical integration algorithms.
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Figure 3.4(a) shows the stability boundary for the attractor labeled by the

rightmost +. One of the unstable trajectories of the saddle, denoted by +, ap-

proaches the attractor as t -- oo. Therefore, the stable trajectories labeled "b"

of the saddle form the stability boundary for the attractor. Figure 3.4(b) shows a

stability region with degenerate boundary labeled "b".

Parker and Chua have generalized Theorem 3.1 to characterize stability bound-

aries for attracting limit cycles [38]. The corresponding result remains much the

same as Theorem 3.1 except that the occurrences of "attractor" in Theorem 3.1 are

substituted with the words "attracting limit cycle". Figure 3.5 schematically illus-

trates the stability boundary for an attracting limit cycle. The boundary is formed

by two repelling limit cycles. Parker and Chua's generalization is known to be true

for many important examples. However, it is largely an intuitive generalization;

no rigorous proof has been given yet. Although our techniques for extracting ge-

ometries of stability regions for point attractors are readily applicable to those of

attracting limit cycles, we shall not discuss them in detail here.

3.3.2 Extracting and representing shapes of stability re-

gions

Since a phase space of a nonlinear dynamical system often consists of qualita-
tively distinct points and regions, the phase-space "shape" of the system refers to

the geometric information about the structures and spatial arrangements of these

points and regions. A qualitative analysis of the dynamical system determines the
"shape" of the phase space. The geometric information about these regions, for

example, is extremely useful in analyzing stability properties of control designs for

complex dynamical systems, such as electric power systems and mechanical control

systems.

Definition 3.2 The "shape" of a dynamical system: The "shape" of a dy-

namical system refers to the geometric characterization of the qualitatively distinct

points and regions of the phase-space representation of the system.

We need to extract the geometric information about the stability regions from

the numerical results about the stability boundaries, and represent it parsimo-

niously so as to facilitate further computations. For example, the representation

is to be used to estimate the volumes of the stability regions, to reason about the
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Figure 3.4: Stability boundaries for an attractor: (a) non-degenerate boundary -

separatrix; (b) degenerate boundary.
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Figure 3.5: The stability boundary for an attracting limit cycle.
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spatial relations with the stability boundaries, to compute topological properties

of the regions, to extract geometric information about trajectory flows, etc.

Generation of discrete trajectory points

The boundary of a stability region is numerically approximated by a collection

of trajectory points. A one-dimensional boundary curve is approximated by a

sequence of points on boundary trajectories, a two-dimensional boundary surface

is approximated by a collection of points on boundary trajectories that sweep out

the surface, and so on.

The discrete trajectory points are generated with numerical integration method.

The method of integrating trajectories from initial points is well-know. However,

it is difficult to generate a set of trajectory points that evenly populate a surface.

The difficulty arises from deciding where the initial points come from and when

the integration stops.
Consider for example a two-dimensional stability-boundary surface. Since the

stability boundary is formed by stable manifolds of saddles, the trajectories sweep-

ing out the surface can be generated by integrating the trajectories backwards from

initial points near the saddles in the directions of stable eigenvectors. This inte-

gration method also generalizes to higher-dimensional boundary surfaces.

In order to maintain relatively even spacings between surface trajectories, the

program must select a subset from all the possible initial points and terminate an

integration of a trajectory when the trajectory gets too close to other trajectories.

We use the following criteria for this purpose: (1) the distribution of trajectory

points, (2) inter-trajectory distances, and (3) local curvature of the surface.

Let's take the surface of a sphere as a stability boundary, and assume a saddle

is at the north pole and a source at the south pole. As we integrate backwards from

the saddle along a set of surface trajectories, these backward trajectories diverge as

they get near the equator. If the distance between two adjacent trajectories is too

large, an additional trajectory is needed to cover the gap. The program backtracks

in this case: it picks an initial point near the north pole, i.e., the saddle, to generate

this new trajectory. The local curvature of the surface also helps determine if an

additional trajectory is necessary. As the backward trajectories begin to converge

at the south pole, some of the trajectories can be terminated for the purpose of

approximation.
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A simplicial representation

Given a set of trajectory points on the stability boundary, a structure on the points

is needed to make explicit the proximity relationships among these points oil the

boundary. We define the structure oil the trajectory points as a graph: the vertices

are the given trajectory points; the edges join those points that are related to each

other, where the notion of relation is defined by some metric. Among the different

structures on the points, a minimal representation-one with fewest edges and

preserving topological structure-is a polyhedral structure having those boundary

points as vertices. Furthermore, the resulting polyhedron is contained in the convex

hull of the boundary points. This polyhedron is not unique. We choose the one

computed from the Delaunay triangulation to be discussed shortly.

A polyhedral structure is a consequence of the so-called simplicial represen-
tation. The elements of a simplicial representation consist of simplices [33]. All

n-dimensional simplex, or an n-simplex for short, determined by n + 1 geomet-

rically independent points4 is the convex hull of the points. These points act as
vertices of the n-simplex. A familiar example of a 0-simplex is a point, a 1-simplex

is a closed line segment, a 2-simplex is a closed triangle, a 3-simplex is a solid

tetrahedron, and so on.

The simplices are basic building blocks from which we construct complicated

geometric spaces. There are certain ways simplices can be joined to form a new

object; for instance, two triangles can be glued together at a vertex, or along

an edge to form a quadrilateral. Given a set of points in a space, a simplicial
tessellation, or a triangulation, is a collection of simplices that cover the convex hull

of the given points and have these points as vertices. For example, a triangulation

on a set of points on a two-dimensional surface divides up the surface into triangular

regions.

Among possible triangulations over these points, the Delaunay triangulation [40]

offers certain advantages over the others with respect to the quality of triangles

measured by the regularity of the triangular mesh. The Delaunay triangulation has

the property that the circumsphere of any simplex does not contain any vertices in

its interior. This property makes the Delaunay triangulation very attractive: the

4A set of points {x0 , zx, ... , x,,} of RN (N > it) is said to be geometrically independent, if
and only if the vectors x, - z0 , ... , xn - zo are linearly independent. Thus two distinct points

in R' form a geometrically independent set; so do three non-collinear points in R2 and four
non-coplanar points in R3.
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Figure 3.6: A Delaunay triangulation over a set of points in a plane.

simplices in the triangulation are most equiangular over all triangulations; in two

dimensions, the minimum interior angles of its triangles is maximized. Figure 3.6

shows the Delaunay triangulation on a set of points.
We are concerned with deriving a discrete representation for the geometric

structure of a phase space that computer programs can efficiently reason about.
The representation needs to preserve the gross features of shape of the struc-
ture with minimum complexity. Yip has used a point-set representation for the

phase-space geometries and topologies in analyzing two-dimensional Hamiltonian
maps [52]. While the point-set representation has been successfully used to recog-
nize patterns of the phase portraits, it is not suitable for the purpose of cutting and

pasting trajectory flows and synthesizing desired phase-space geometry and topol-
ogy. The simplicial structure, on the other hand, is a much coarser representation
for describing qualitative features of geometric pieces. The simplicial represen-

tation is independent of the dimensions, permits recursive decomposition, and is
characterized by certain algebraic signatures such as fundamental groups [33]. A
point-set representation or trajectory representation would be too fine-grain for

manipulating the shape of phase spaces and would incur unnecessary complexity
in searching for control paths in phase space.
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Extraction of geometric structures

The geometric information about a stability region is represented by the polyhe-

dron tightly stretched over the trajectory points on the stability boundary. Ex-

traction of this polyhedral approximation proceeds in two steps: computing a

triangulation of the convex hull containing the polyhedron, and eliminating exte-

rior triangles. The triangulation is computed with the Delaunay method on the

set of points which results in a tessellation of the convex hull of these points with

simplices. The polyhedral approximation is then extracted from the triangulation

by a sculpture method used in visual information representation [7], followed by a

more expensive centroid method. Simplices exterior to the polyhedron are elimi-

nated first by heuristic rules and then by testing their membership in the stability

region with trajectories emanating from the centroids of the simplices.

We have implemented the Delaunay triangulation in n dimensions that supports

incremental insertion and deletion of points, adapted from an algorithm proposed

for planar triangulation [37]. The time complexity of the algorithm grows exponen-

tially with the dimensions, so does the number of simplices in the triangulation.

For N points in n spatial dimensions, the time and space complexities scale as

N°(n) [401.
Under the condition that the distribution of boundary points is reasonably

dense and uniform on the boundary, the polyhedron approximating the stability

region is contained in the triangulation of the convex hull. Furthermore, the union

of all the circumspheres of interior simplices is a good approximation for the region.

In order to extract the polyhedron, simplices exterior to the polyhedron have to

be eliminated.

For geometric structures with relatively smooth surfaces, i.e., small curvatures,

the exterior simplices are eliminated with a relatively fast and inexpensive method

using the circumsphere heuristics [7]. We observe that only certain type of sim-

plices that satisfy the so-called "visibility conditions" can be exterior ones and are

therefore candidates for elimination. We associate a value V with each candidate.

The value V is a goodness measure of the polyhedral approximation to the true

boundary contributed by this simplex. The minimum of all V's of the interior

simplices is denoted by Vmin, a measure for the overall goodness of the approxima-

tion. We focus the search on candidates satisfying the "visibility conditions" and

eliminate the exterior simplices by deleting the candidate simplex with the least

V among all the candidates, until the number of points on the boundary of the
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polyhedral approximation is the same as that of the original set of the boundary

points and the elimination of this candidate could not further increase Vi,,.

We explore the properties of interior circumspheres versus those of exterior

ones. When the distribution of boundary points respects the local geometries of

the boundary they approximate, the envelope of all the circumspheres of interior

simplices is close to the true boundary. Consider the maximum distance between

the faces of a simplex that are on the boundary and its circumsphere: the smaller

the distance is, the better the simplex approximates the boundary. The distance

for an interior simplex is smaller than that of an exterior one. We use the inverse

of this distance as the value of V for the simplex. Another possible candidate

for V is the inverse of the circumsphere radius. Figure 3.7(a) illustrates that for

smooth shapes the exterior triangles tend to be flat and have larger circumcircles,

compared with the interior ones.

We reiterate that the condition on the distribution of the boundary points has

to be checked with respect to the shape of a region, to ensure that the circum-

sphere heuristic rule for elimination works. For example, more points are needed

to approximate the boundary of a region with finger-like narrow parts, as shown

in Figure 3.7(b).

The sculpture method is stated as follows:

Algorithm 3.1 Sculpture method [7]:

1. Construct a set G of all simplices in the triangulation and a set H of candidate

simplices satisfying "visibility conditions";

2. Order the simplices of H according to their V values;

3. Consider the simplex s of H having the least V. If the number of vertices of the

polyhedron formed by the set G is less than that of the original set of points or

the removal of s increases the Vmn of H, then delete s from G and H; otherwise,

return G and terminate;

4. Update neighbors ni of s in G. Add ni to H. Go to Step 2.

Visibility conditions:

e In 2D, simplices with one edge and two vertices on the boundaries.
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Figure 3.7: Circumcircle properties of exterior triangles vs. interior ones: (a) a

region with smooth shape; (b) a region with narrow-parts.
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"* In 3D, simplices with exactly one face, three edges, and three points on tile

boundary, or those with exactly two faces, five edges and four points on the

boundary.

"* In n-dimensions, simplices with one, or two, ..., up to n - 1 proper faces on

the boundary.

Each simplex s in the triangulation has a list of neighbors that share one or

more common faces with s. When s is deleted from the triangulation, its neighbors

need to be updated. A simplex satisfying the "visibility conditions" is added to

H once and is deleted from H at most once in the elimination process. Let the

number of simplices in the set G be M. When the set H is implemented as a heap,

each insertion or deletion of H costs at most O(log M). The worst-case complexity

of the algorithm therefore is O(M log M).

For systems whose stability regions have interleaved geometric structures or

holes, the geometric extraction algorithm using the circumsphere heuristic de-

scribed earlier often terminates before all the exterior simplices are eliminated. In

this case, MAPS resorts to a more expensive method, the centroid method, that

determines the membership of each simplex in the stability region: a simplex is

classified as being in a stability region of an attractor if the trajectory emanating

from the centroid of the simplex approaches the attractor in the limit or enters

another simplex already in the stability region. For example, the buckling column

discussed in Chapter 2 exhibits a banded phase space (see Figures 2.1 and 2.4).

The circumsphere heuristic method terminates before all the boundary trajectory

points are on the boundary of the polyhedral approximation. The centroid method

is required to eliminate the remaining triangles.

The centroid method is implemented by an unraveling algorithm, adapted from

the cell-to-cell algorithm [22], which links together simplices according to the map-

ping of their centroids under trajectory flows.

Algorithm 3.2 Centroid method:

1. Let a be the attractor under consideration, A be the set of simplices containing a in

the interior or on the boundaries, G be the set of all simplices in the triangulation

except for those of A, and C be a set initially empty;
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2. For a simplex s E G, let p be the next simplex that the trajectory starting at

the centroid of s enters. Delete s from G. If p E A. add s and all the reachable

simplices' from s to A; otherwise, add s to C and make a pointer from p to s:

3. If G is empty, return A and terminate; otherwise, go to Step 2.

The time complexity of centroid method scales linearly with the number of

simplices in the triangulation. The method requires integration over a time interval

only once for each simplex.

The sculpture method and the centroid method work together to extract the

geometric shape of the stability regions. The information about the boundary is

then used in constructing the flow-pipe representation for the phase space. More

specifically, the boundary information is used in labeling the simplices with flow

directions at the boundary. Details of this will be discussed next.

3.3.3 Modeling trajectory flow pipes

The flow pipes are further geometric and dynamical characterizations of stability

regions. They form the foundation for the search algorithm for synthesizing global

control paths.

The polyhedral modeling of stability regions provides a geometric structure

for reasoning about the stability boundaries. However, it does not provide in-

formation on how the trajectories flow within the region-the transient behavior

very important in high-quality control design. The characterization of trajectory

flows captures the missing information about the underlying vector-field flows;

such information is essential for efficiently "looking for" good control reference

trajectories.

We introduce the technique of flow pipes for describing the direction and the

shape of the trajectory flows. The flow pipes form a discrete representation for

phase space and yet preserve the fine geometries of the trajectories. The flow-

pipe modeling, together with that of equilibria and stability regions, characterizes

the transient and asymptotic behaviors of the dynamical systems in terms of the

qualitative phase-space structures. Figure 3.8(a) shows a portion of the phase

space for the Lienard equation x" + 0.5x' + x2 = 1, consisting of all trajectories

ending at the attractor denoted by the symbol +. A flow pipe groups this collection

'A simplex x is reachable from s if there is a pointer or a chain of pointers from s to x.
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of trajectories that exhibit the same qualitative feature into an equivalence class.

as shown in Figure 3.8(b).

Definition 3.3 flow pipe: A flow pipe models a collection of trajectories exhibit-

ing the same qualitative features in the phase space. It is an equivalence class of

trajectory paths, each of which can be continuously deformed to another one, de-

limited by the boundaries of stability regions, trajectories connecting equilibria, or

boundary surfaces dictated by applications6 .

Constructing flow pipes

Computationally, a flow pipe is constructed by aggregating consistent geometric

pieces with respect to the way that the flow travels from piece to piece. The

catalogue of flow types on boundaries of the geometric pieces is a set of consistency

constraints derived from the underlying dynamics of the vector field.

Given the simplicial tessellation of the phase space constructed by MAPS, each

proper face f of a simplex s in the tessellation is classified into one of the three

types with respect to the direction of the flow (see Figure 3.9), according to the

following labeling scheme:

1. unidirectional flow:

label in: Trajectories flow into s on f;

label out: Trajectories flow out of s on f.

2. bidirectional flow:

label in-and-out: Trajectories flow into s on some portion of f and flow out

of s on other portion.

3. zero flow:

label tangent: The flow does not intersect f. Hence the proper face f is on

the boundary of the flow.

To determine the direction of the flow on a face of a simplex, the program

samples N points evenly distributed on the face and computes the components of

6 Formally, a flow pipe models a homotopy equivalence class of trajectory paths delimited
by the boundaries of stability regions, trajectories connecting equilibria, or application-specific
boundaries. If the ends of a flow pipe are squeezed to points, the flow pipe is a path homotopy
equivalence class of trajectories.
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Figure 3.8: Grouping trajectories into flow pipes: (a) a collection of trajectories

with the same qualitative feature; (b) a corresponding flow pipe.
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Figure 3.9: Classifying faces of simplices with respect to flows.

flow vectors along the normals of the face at these points. The stability boundaries

necessarily separate flows and hence are on the flow-pipe boundary. Since the true

stability boundary is only approximated by polyhedral faces, the above sampling

method could yield incorrect flow labels on the boundary. The boundary infor-

mation obtained in the characterization of the stability regions described earlier

is used in labeling these zero flow boundary faces. In addition, the trajectories

that connect saddles on the boundary and the attractor also separate trajectory

flows. The simplicial tessellation is refined with the introduction of trajectory

points sampled along these connecting trajectories.

A proper face of a simplex is called monotonic with respect to both the flow

and the simplex, if the face is labeled either type I or type 3 in the above labeling

scheme. A simplex is monotonic with respect to the flow if all of its proper faces

are monotonic. Similarly, a polyhedron is monotonic if all of its proper faces are

monotonic. Given two simplices agreeing on a non-monotonic proper face, the

common non-monotonic face is canceled in the polyhedron formed by the two

simplices; see Figure 3.10(a). A non-monotonic polyhedron continues to grow in
this way until all of its proper faces are monotonic. The monotonic polyhedra

are then aggregated to form flow pipes in such a way as to conserve the flow on

their proper faces; see Figure 3.10(b). The following algorithm groups simplices

into smallest monotonic polyhedra and clusters the monotonic polyhedra into flow

pipes.

Algorithm 3.3 Flow-pipe construction:
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Figure 3. 10: Construction of flow pipes: (a) grouping simplices to form a monotonic

polyhedron by canceling common non-monotonic faces; (b) aggregating monotonic

polyhedra to form a flow pipe according to flow directions at the boundaries.
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1. Label proper faces of each simplex with respect to the flow.

2. Cluster simplices into monotonic polyhedra:

Cluster simplices into equivalence classes with the equivalence relation on the

proper faces of the simplices: two simplices are equal if they agree on a proper

face with the same flow label: in-and-out.

3. Cluster monotonic polyhedra into flow pipes:

Cluster monotonic polyhedra into equivalence classes with the equivalence relation
on the proper faces of the polyhedra: two monotonic polyhedra are equal if they

agree on a proper face with consistent flow directions: in and out, respectively.

4. Order the monotonic polyhedra in each class from Step 3 according to the flow

direction. Return.

The resulting flow pipes model the trajectory flows. The boundary of a flow

pipe is formed by the proper faces labeled tangent of simplices in the pipe.

Classifying shapes of flow pipes

Flow pipes capture dynamical shapes. A flow pipe ends at an attractor and/or

starts from a repellor. Saddles can not be in a flow pipe except for the boundary

of the pipe, since flow pipes further decompose the stability regions. In a bounded

region, each flow pipe either ends at an attractor or leaves the region.

Flow pipes exhibit topological shapes. Each flow pipe is classified according to

its relative shape. A flow pipe around a stable limit cycle is a closed pipe. Most

pipes are open. The open pipes can be relatively straight or highly wound. One,

two, or more pipes can side by side wind into a spiral, called n-winding pipes. See

Figure 3.11. We classify the pipes into the following categories:

I. open pipes: (a) straight pipes; (b) wound pipes.

2. closed pipes.

In the earlier Figure 3.8(b), for example, a single pipe winds into a spiral shape

at its end and forms the stability region for the attractor. More complicated

patterns can occur with more pipes or in higher dimensions.
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Figure 3.11: Topological shapes of flow pipes.

3.4 The MAPS Analysis Algorithm

3.4.1 The algorithm

We present the following algorithm for analyzing, extracting, and representing

qualitative features of a dynamical system of any order in the phase space.

Algorithm 3.4 MAPS analysis:

(1) Identify qualitative behaviors:
(a) locate equilibrium points/limit cycles and classify their stability types;
(b) compute stable and unstable trajectories for each saddle/limit cycle;
(c) identify those saddles/limit cycles whose unstable trajectories approach

an attractor;
(d) the stability boundary for the attractor is the union of the stable trajectories

of those saddles/limit cycles identified in Step (c);
(e) check if consistency rules are violated. If yes, look for missing equilibrium

points/limit cycles and go to Step (a). Otherwise, go to the next step.

(2) Extract geometric structures:
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(a) for each attractor, collect stability boundary points:

(b) tessellate the convex hull of the boundary points with a triangulation:

(c) extract a polyhedral approximation to the stability region.

(3) Construct flow pipe:

(a) refine the triangulation of the stability regions;

(b) label simplices with flow directions at boundaries;

(c) aggregate the labeled simplices into flow pipes.

(4) Summarize qualitative behaviors and generate a high-level description:

(a) compile the phase-space data structure from Step I into a relational graph;

(b) augment the graph with the geometric structures from Steps 2 and 3;

(c) report the graph as the output.

The set of consistency rules specify the conditions for the stability boundaries

and are used in the algorithm to automatically locate missing saddles.

1. The Existence Rule: Every stability region of an attractor has a boundary in a

phase space with multiple attractors;

2. The Separation Rule: Separatrices either form a closed surface or become un-

bounded on all ends.

The first rule states the existence of stability boundaries in a phase space

with multiple attractors. The second rule describes the separation property of

multiple stability regions. The separatrices are stability boundaries that separate

two stability regions.

The first step of our algorithm is based on a numerical method proposed by

Parker and Chua [38] for numerically determining stability boundaries of pla-

nar systems. We have augmented their method with the set of consistency rules

they suggested to automate the locating of saddles. Since the Newton-Raphson

method [41] used in finding equilibrium points requires an initial guess, the Parker-

Chua method uses a grid to set up initial guesses and is able to find all the stable

and unstable equilibrium points under normal circumstances. However, they re-

quire that the initial guesses for saddles be provided manually by the user. We

seek to automate saddle locating by focusing the search for missing saddles on the

most likely places using partial boundary information already obtained, or by re-

fining the initial guesses for the Newton-Raphson method. We want to emphasize
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Figure 3.12: The flow chart of MAPS.
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that our algorithm is valid for higher dimensional systems as well and generates a

symbolic description of the phase-space structure. The Parker-Chua method is de-

signed for numerically analyzing planar systems only. We note that our algorithm

also finds degenerate boundaries if there are any.

In the second step, the algorithm extracts the geometric structures of stabil-

ity regions. It uses a triangulation method to tessellate the phase space of the
system and computes polyhedral approximations to the regions. MAPS internally
represents a trajectory with a sequence of integration points. It uses an adaptive

4th-order Runge-Kutta method [41] to integrate trajectories and to generate the
boundary points that approximate a stability boundary.

The third step refines the triangulation from the second step and constructs

flow pipes, using the information about the stability boundaries. The unstable
trajectories of saddles connect the saddles with the attractors. We call these tra-

jectories the connecting trajectories. The triangulation from Step 2 is refined by

the insertion of trajectory points from the connecting trajectories. The algorithm

for the flow pipes clusters simplices into equivalence classes as described in Sec-

tion 3.3.3.

The last step represents the data structure of the phase-space geometries and
topologies with a relational graph. The details of each step will be illustrated with

an example in the following section.

The flow chart of MAPS is shown in Figure 3.12. The input to MAPS is a
system of governing equations for a dynamical system. We could also start with
a set of measured states from experiments. These numerical states could then

be analyzed and clustered to form phase portraits. The phase space could also
be reconstructed from a measured time series of just one state variable, using a

technique called delay coordinates introduced in [36, 48].

3.4.2 The main illustration

We illustrate how MAPS computes the high-level description of a dynamical system
with an example. Consider a 2nd-order nonlinear system

x' = -3x + 4x 2  xy/2 -x3

y' = -2.1y + xy + u

where u is a parameter. For the parameter value u = 0.2, the vector field within

the region -1.0 < x < 4.0 and -1.0 < y < 4.0 is shown in Figure 3.13. MAPS
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Figure 3.13: The main illustration: the vector field of a 2nd-order nonlinear system.

analyzes the qualitative behavior of the system within this region. The program
actually performs the analysis in a slightly larger bounding box to account for
trajectories that enter the bounding box again after a short exit. (The current
implementation magnifies the original bounding box by a factor of 1.5 on each
side.) The equilibrium points of the system are found by a zero-finding method
on f(x, u)-the Newton-Raphson method. MAPS locates four equilibrium points
within the region and classifies their stabilities by inspecting the eigenvalues of
Jacobians at the equilibrium points: two attractors at (0.0, 0.0952) and (2.0,2.0)
and two saddles at (1.05,0.19) and (3.05,-0.21), all shown in Figure 3.14(a) (Note
that the attractors are represented with the symbol + and the saddles are repre-
sented with the symbol q.). The stable and unstable trajectories of the saddle are
then computed by integrating the system from a small neighborhood of the saddle
in the directions of the stable and unstable eigenvectors backwards and forwards,
respectively.

Since one of the unstable trajectories of each saddle goes to the attractor at
(2.0, 2.0), the stability boundary of the attractor consists of the stable trajectories
of both saddles. Similarly, the stability boundary of the attractor at (0.0, 0.0952)

51



consists of the stable trajectories of the saddle at (1.05,0.19), one of whose unstable

trajectories goes to the attractor. However, within the region of interest there are
trajectories that leave the bounding box. These trajectories can be conveniently

thought of as the stable trajectories of an attractor at infinity. Therefore, the sta-

ble trajectories of the saddle at (3.05, -0.21) form the stability boundary for the

attractor at infinity, for one of the unstable trajectories of the saddle leaves the

bounding box. Consistency rules are checked and satisfied. At the end of this step,
MAPS finds three qualitatively different regions associated with the three attrac-

tors and internally represents the phase-space structure in a data structure: the
attractors are connected with each other via saddles and associated with stability

boundaries (Figure 3.14(b)).

The second step extracts a polyhedral approximation to each stability region

preserving the gross features of the shape of the region. Consider the stability
region of the attractor at (2.0,2.0). The stability boundary is numerically approx-

imated by a collection of trajectory points (70 in total for this example) relatively
uniform and dense on the boundary; see Figure 3.15(c).

A Delaunay triangulation is performed on this set of points. As the result, the
convex hull of the points is tessellated with triangles; see Figure 3.15(d). Since the

boundary points are distributed reasonably densely and uniformly on the boundary,

the polyhedral shape of the stability region is contained in the triangulation of the

convex hull. MAPS successfully eliminates the triangles exterior to the polyhedron
with the heuristic method, without resorting to the centroid method. The resulting

region is shown in Figure 3.16(e).

MAPS then computes the flow-pipe modeling of the phase space. The triangu-
lation of the stability region obtained above is further refined with additional points
from connecting trajectories. MAPS labels each triangle in the refined triangula-

tion with flow direction on its faces and clusters these triangles into equivalence

classes. This results in two flow pipes that form the stability region from the

second step (Figure 3.16(f)).

MAPS compiles the data structure for equilibria, stability regions, and flow
pipes from earlier steps into a relational graph; see Figure 3.17. It reports its

findings to the user in a symbolic summary in Figure 3.18.
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(a)

5 
2

(b)

Figure 3.14: The main illustration-MAPS output: (a) equilibrium points; (b)
boundary and connecting trajectories. (to be continued)
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(c)

(d)

Figure :3.15: (cont'd) The main illustration-MAPS output: (c) points on the

stability boundary for one of the attractors; (d) triangulation of the convex hull.
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(e)

(f)

Figure 3.16: (cont'd) The main illustration-MAPS output: (e) polyhedral ap-

proximation to the stability region computed from the triangulation on boundary

points; (f) two flow pipes computed from the refined triangulation. The flow pipes

form the stability region.
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stability region 2

flow pipes 1,2

attractor boundary trajs 1,2,3,4:
(2,2) connecting trajs 6,7

attractor
(0, .0952)

A attractor
*infinity*

rf- - -.. - - - - -

stability region 3 r

flow pipe 4 stability region 1
boundary trajs 1,2 flow pipe 3
connecting traj 5 boundary trajs 3,4

-- connecting traj 8
L - - -- - - - - --- -

Figure 3.17: The main illustration: the relational graph constructed by MAPS.
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<equilibrium-points:
equilibrium 1. (saddle at (3.05 -. 21))

equilibrium 2. (attractor at (2. 2.))

equilibrium 3. (saddle at (1.05 .19))

equilibrium 4. (attractor at (0. .0962))>

<trajectories:
<boundary-trajectories:

trajectory 1. (from *infinity* to (1.05 .19))

trajectory 2. (from *infinity* to (1.05 .19))
trajectory 3. (from *infinity* to (3.05 -. 21))

trajectory 4. (from *infinity* to (3.05 -. 21))>
<connecting-trajectories:

trajectory 5. (from (1.05 .19) to (0. .0952))

trajectory 6. (from (1.05 .19) to (2. 2.))

trajectory 7. (from (3.05 -. 21) to (2. 2.))

trajectory 8. (from (3.05 -. 21) to *infinity*)>>

<stability-regions:

stability-region 1.

attractor at *infinity*

stability-boundary: (trajectory 4. trajectory 3.)
connecting-trajectories: (trajectory 8)

stability-region 2.

attractor at (2. 2.)

stability-boundary: (trajectory 4. trajectory 3. trajectory 2. trajectory 1.)

connecting-trajectories: (trajectory 7 trajectory 6)

stability-region 3.
attractor at (0. .0952)

stability-boundary: (trajectory 2. trajectory 1.)

connecting-trajectories: (trajectory 5)>

<flow-pipes:
flow-pipe 1. (from *infinity* to (2. 2.))

boundary: (trajectory 3. trajectory 1. trajectory 7. trajectory 6.)

flow-pipe 2. (from *infinity* to (2. 2.))
boundary: (trajectory 4. trajectory 2. trajectory 7. trajectory 6.)

flow-pipe 3. (from *infinity* to *infinity*)

boundary: (trajectory 4. trajectory 3. trajectory 8.)

flow-pipe 4. (from *infinity* to (0. .0962))

boundary: (trajectory 2. trajectory 1. trajectory 5.)>
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3.4.3 Implementation details

MAPS is implemented in the Scheme Language. Internally, a point in phase space

is a vector of the coordinates. An equilibrium point is a list of its position, eigenval-

ues and eigenvectors of Jacobian at the point, and its stability type. A trajectory

specifies the type of the trajectory, start and end points, and a sequence of inte-

gration points as a Scheme stream object. The type could be either stable-man

or unstable-man, standing for stable manifold or unstable manifold; a trajectory

typed stable-man is integrated backwards, and a trajectory typed unstable-man

is integrated forwards. A stability region is represented as a list of the attractor,

the boundary and connecting trajectories, and the polyhedral approximation. A

flow pipe is a list of its polyhedral approximation, the boundary, and the start

and end faces. Table 3.1 summarizes the internal representation of these objects.

The examples for the stability region and the flow pipe ar, omitted due to space

limitations.

3.4.4 More examples

Our algorithm also applies to higher-dimensional systems. Consider the following

3rd-order nonlinear system {1 Y
y Z - x2 _ y

= 1.0- y- 0.8z 2

MAPS locates an attractor at (1.06,0.0, 1.12) and a saddle at (-1.06,0.0, 1.12)

within the region -5.0 < x < 5.0, -5.0 < y < 5.0, and -5.0 < z < 5.0, and

determines that the stable trajectories of the saddle form the stability boundary

for the attractor. The stability boundary is a two-dimensional surface and is ap-

proximated by a set of relatively evenly spaced trajectories. MAPS then tessellates

the phase space with tetrahedra and extracts a polyhedral approximation to the

stability region of the attractor (see Figure 3.19). As described earlier, MAPS uses

general geometric primitives - the n-simplices - to approximate stability regions

in n dimensions.

We have also run MAPS on a system that is not generic and falls outside the

domain of our method (see discussion in Section 3.5.1). The system is the earlier

2nd-order example (3.1) in Section 3.4.2 with parameter value u = 0. MAPS
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Object a point

Representation a vector of coordinates

Example #(2. 2.)

Object an equilibrium

Representation a list: (point, eigenvalues/eigenvectors, stability type)

Example (#(2. 2.) (-.05+1.41i -. 05-1.41i)

(#(1. 0) #(.025 1.)) stable)

Object a trajectory

Representation a list: (type, start, end, integration points)

Example (stable-man *infinity* #(3.05 -. 21)
(#(3.05 -. 21) . #[promise 26]))

Object a stability region

Representation a list: (attractor, boundary trajectories, connecting trajectories,
polyhedron)

Example ...

Object a flow pipe

Representation a list: (polyhedron, boundary, start faces, end faces)

Example I __ __ _I

Table 3.1: The internal representation of phase-space data objects.
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(a)

(b)

Figure 3.19: The analysis of a 3rd-order nonlinear system: (a) projection of stabil-

ity boundary and connecting trajectories in x-z plane; (b) projection of polyhedral

approximation in x--- plane.
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locates four equilibrium points within the region -1.0 < x < 4.0 and -1.0 < y _<

4.0 and computes the stable and unstable trajectories of saddles. It terminates

with the following partial description:

<equilibrium-points:

equilibrium 1. (saddle at (3. 0.))

equilibrium 2. (attractor at (2.1 1.98))

equilibrium 3. (saddle at (1. 0.))

equilibrium 4. (attractor at (0. 0.))>

<traj ectories:

trajectory 1. (from *infinity* to (1. 0.))

trajectory 2. (from *infinity* to (1. 0.))

trajectory 3. (from (1. 0.) to (3. 0.))

trajectory 4. (from *infinity* to (3. 0.))

trajectory S. (from (1. 0.) to (0. 0.))

trajectory 6. (from (3. 0.) to (2.1 1.98))

trajectory 7. (from (3. 0.) to *infinity*)>

<saddle-connection:

trajectory 3. (from (1. 0.) to (3. 0.))>

MAPS discovers a saddle connection in the course of determining the relational
graph of the phase-space structure: the trajectory that serves both as an unstable
trajectory of the saddle at (1.0,0.0) and as a stable trajectory of the saddle at
(3.0, 0.0). The saddle connection is labeled as trajectory 3 in Figure 3.20. MAPS
concludes that the system is not generic-which also implies structural instability
for the planar system here-and abandons any further efforts to characterize the
phase-space structure. Since saddle connections are often precursors to chaos or
structural instability, we believe that they are important in partially characterizing
the phase-space structures of chaotic or structurally unstable systems.

3.4.5 Hierarchical extraction and representation of phase-

space information

We have described and demonstrated our algorithm for analyzing a dynamical

system through successive computations on the system, starting from its system
equation representation. MAPS generates a high-level description of the dynam-
ical system at the end of the analysis. To bridge the large semantic gap between
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Figure 3.20: A 2nd-order system with a saddle connection.

the deduced symbolic description and the system equation representation of the in-
put, MAPS has employed multiple intermediate representations for the dynamical

system, shown in Figure 3.21.

MAPS extracts the information incrementally, applying a set of operations to

each intermediate representation. At each level of the representation, implicit

properties, such as spatial relations, of the system at different scales are made

explicit and thus can be accessed and manipulated by the operators at the next

level of the representation. In the order of analysis, MAPS first generates a local

description of equilibrium points, limit cycles, and their eigenstructures. It then
computes the polyhedral approximations to stability regions and trajectory flows.

Finally, it pieces together the local information about each limit set to form a

global picture of the phase-space structure: the relational graph describing the

interactions of equilibrium points, limit cycles, stability regions, and flow pipes.
The internal representation of the phase-space description as a relational graph

captures the qualitative aspects of the phase-space structure. In the relational
graph, nodes are attractors and arcs denote the relations between their stability

regions. Each node has information about the attractor it represents, the associ-

ated stability region, trajectory flows, and their polyhedral approximations, and
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system eqa.on representation
INPjUT

Local dynamical description
(equilibrium points/limit cycles, local stabilities)

Geometric description
(geometric modeling of stability regions/flow pipes)

Global relational description
(interaction of stability regions/flow pipes)

Symbolic description

Figure 3.21: A multi-layered representation for a dynamical system used in MAPS.

the boundary trajectories and boundary equilibrium points and limit cycles. Each
equilibrium point has information about its position, eigenvalues and eigenvectors,

and stability type.

3.5 Discussion

MAPS analyzes qualitative behaviors of nonlinear dynamical systems using knowl-
edge about stability and trajectory flows from dynamical systems theory. It ex-
tracts the geometric information from the numerical results and represents it with

a qualitative phase-space structure. In this section, we discuss the class of dynam-
ical systems to which our method applies, further extensions to MAPS, and the
role of MAPS in assisting control engineers in visualizing behaviors of dynamical

systems.

3.5.1 Scope of the analysis

We have stated that the theoretical basis of our algorithm for locating stability

boundaries is the result of Chiang et al. [10]. Chiang et al. give a topological and
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dynamical characterization of the stability boundaries for a class of autonomous

dynamical systems and show that the stability boundary of an attractor is formed

by the stable trajectories of equilibrium points and limit cycles on the boundary.

This class of dynamical systems is defined by three conditions:

1. Hyperbolicity: All equilibrium points and limit cycles on stability boundaries

are hyperbolic7 .

2. Transversality: The stable and unstable trajectories of equilibrium points

and limit cycles on stability boundaries are transversal to each other.

3. Finite limits of boundary trajectories: Every trajectory on the stability

boundaries approaches an equilibrium point or a limit cycle as t -+ 00.

Conditions (1) and (2) are generic properties satisfied by almost all dynami-

cal systems. The example in Section 3.4.4 that has a saddle connection violates

condition (2). Structurally stable systems satisfy the generic conditions (1) and

(2) (see [19, 461 for a definition of generic properties and [181 for discussions on

structural stability of dynamical systems). Since many systems encountered in en-

gineering applications are structurally stable, we further restrict ourselves to struc-

turally stable systems for the sake of simplicity8 . Structural stability implies the

absence of quasi-periodic orbits. Condition (3) excludes some structurally stable

systems. Our method applies to a fairly large class of autonomous dynamical sys-

tems as defined by the three conditions. We note that a periodic non-autonomous

dynamical system can be converted into an autonomous system [18] and can also

be analyzed by MAPS.

In its current implementation, MAPS does not handle systems having chaotic

attractors, in which stability regions and/or stability boundaries exhibit fractal

structures. It also assumes that the number of equilibria and limit cycles of a

system is finite.

'Consider the Jacobian of the vector field at an equilibrium point. If all the eigenvalues of
the Jacobian have non-zero real parts, then the equilibrium point is hyperbolic. Similarly, a limit
cycle is hyperbolic if none of its characteristic multipliers, the eigenvalues of its Poincar6 map,
lies on the unit circle in the complex plane.

'This is not to say that structurally unstable systems are not interesting. in fact, Hamiltonian
systems are important in investigating phenomena in which energy dissipation is negligible.
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3.5.2 Extensions

The theoretical basis of our approach holds regardless of phase-space dimension-

ality, as does the geometric extraction method of our algorithm. The polyhedral

approximation is a natural, economical representation for the boundary surface.

We have run MAPS on systems in dimensions up to three. In higher dimensions,

the computation can be very expensive. We have noted in Section 3.3.2 that the

complexity of the Delaunay triangulation grows exponentially with the number of

dimensions. The number of points necessary to approximate the boundary is also

a function of the quality of the approximation. The computational complexity

reflected in managing the large data structure for representing phase-space geome-

tries needs to be addressed at greater length in future research. One case in which

a reduction of the complexity is possible is when the interesting dynamics is con-

strained to a submanifold of a high-dimensional phase portrait. A program could

recognize such structure of the phase space and restrict the computation to that

subspace.

In dimensions three or higher, a stability boundary surface consists of tra-

jectories sweeping out the surface. Obtaining a set of relatively evenly spaced

trajectories of the boundary to approximate the surface is challenging. MAPS

currently uses spacings between adjacent boundary trajectories and local curva-

ture to measure the quality of the approximation. Combining these measures with

other kind of metric information about the boundary surface could improve the

approximation. Much remains to be explored in order to best approximate com-

plicated curved hypersurfaces and to reflect the underlying dynamics.

MAPS extracts the geometric structure using the information about the sta-

bility boundaries and additional information about the trajectories. Other com-

plicated stability regions, such as those containing holes, can also be tackled with

this approach. More work needs to be done to catalogue the extraction of region

shapes with various kinds of approaches.

We have shown that MAPS detected a saddle connection in a structurally unsta-

ble system. A considerable amount of work needs to be directed toward exploring

robust methods for detecting saddle connections and extending MAPS to recog-

nize chaotic attractors. In the case when the stability boundary is fractal, although

the fine structure of the boundary would be difficult to characterize with a crisp

surface, it is still possible to envelop the fractal structure with a boundary layer of

certain thickness. Another possible extension is to augment the current program
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with a bifurcation analysis, similar to Abelson's Bifurcation Interpreter [3].

3.5.3 The use of MAPS in visualization

The qualitative phase-space description can assist engineers in designing controllers

for complex systems.

We envision that a control engineer uses MAPS to observe qualitative changes

of phase-space structures when varying control parameters. These changes include:

1. the birth, disappearance, and movement of equilibrium points and limit cy-

cles;

2. the enlargement and shrinking of stability regions;

3. other phase-space qualitative changes.

A program has been constructed for graphically displaying three-dimensional geo-

metric structures: it renders the surfaces of 3D polyhedral structures with different

lighting parameters. With such a graphics rendering tool, an engineer can visu-

alize the geometries of a phase portrait, interactively edit the system to observe

corresponding changes, and cut-and-paste useful portions of phase portraits with

different parameter values to form a composite having the desired properties.

In the next chapter, we automate the above scenario with the Phase Space

Navigator that autonomously synthesizes nonlinear controllers in phase spaces.

More importantly, the method will be able to synthesize a nonlinear control sys-

tem whose phase space is high dimensional and difficult to visualize, or on which

the desired control properties are impossible to obtain with traditional design tech-

niques. The topological and dynamical modeling of the phase-space stability regions

and trajectory flows forms the basis for our method.

3.6 Summary of the Chapter

We have developed a qualitative method for automatically analyzing phase-space

structures of nonlinear dynamical systems and have constructed MAPS to demon-

strate the method. MAPS "looks" at a phase space, finds qualitatively different

regions-the stability regions, models trajectory flows with equivalence classes, and

extracts and represents the qualitative features. It employs deep domain knowl-

edge of dynamical systems theory to recognize the qualitative structures of phase
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spaces. It computes a high-level description of a dynamical system through a com-

bination of numerical, combinatorial, and geometric computations and represents

the phase-space structure with a relational graph. The qualitative representation

of dynamical systems and the computational formulation of the knowledge of engi-

neering analysis enable us to build computer programs that automatically design

high-quality controllers for nonlinear systems. In the next chapter we will use

MAPS to analyze a collection of phase spaces each of which corresponds to fixed

control parameter values.
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Chapter 4

Automatic Phase-Space Control

Synthesis - Phase Space

Navigator

4.1 Introduction

This chapter develops Phase Space Navigator, an autonomous system for control
synthesis of nonlinear dynamical systems. The Phase Space Navigator automat-

ically designs a controller for a nonlinear system in phase space. It generates

control laws by synthesizing the desired phase-space flow "shapes" for the system

and planning and navigating the system along good control trajectories in phase

space.

The Phase Space Navigator relies on the phase-space knowledge of dynamical

control systems. It employs the MAPS program to extract and represent qualita-

tive phase-space structures characterizing the qualitative aspects of the dynamics.

The control synthesis utilizes flow pipes to model phase spaces and to search for

global control paths. We will present the novel idea of phase-space navigation as

a paradigm for high-performance nonlinear control design. Algorithms for control

trajectory planning and tracking will be described. The synthesis method will be

illustrated with an example of synthesizing anti-buckling control laws for a steel

column.
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4.2 Automatic Control Synthesis in Phase Space

The Phase Space Navigator synthesizes a control system from a geometric point

of view in phase space. The control of a dynamical system is interpreted as the
"steering" of the system trajectory, emanating from some initial state, to the de-

sired state by a control signal.

4.2.1 Overview of the Phase Space Navigator

The Phase Space Navigator consists of a global control path planner, a local trajec-

tory generator, and a reference trajectory follower. The global path planner finds

optimal paths from an initial state to the goal state in phase space, consisting of a

sequence of path segments connected at intermediate points where the control pa-

rameter changes. A brute-force, fine-grain search in high-dimensional phase spaces

would be prohibitively expensive. High-level descriptions of the phase space and

trajectory flows provide a way to efficiently reason about phase-space structures

and search for global control paths. The local trajectory generator uses the flow

information about the phase-space trajectories to produce smoothed trajectories.

The trajectory follower tracks the planned reference trajectory, reactively corrects

deviations, and resynthesizes the reference trajectory if the dynamics of the system

changes significantly.

4.2.2 Intelligent navigation in phase space

The control objective for a stabilization problem is to synthesize a control path,

along which the physical system can be brought to the goal state and made to stay

there afterwards under control. We are particularly interested in cases in which

physical plants to be controlled operate in large regions where nonlinearities of

the plants cannot be ignored. When no global stabilization control laws can be

found for the desired state with traditional control techniques, composite control

paths have to be synthesized. Geometrically, this is the case where initial states

of the systems are far away from the desired state. Phase Space Navigator takes

advantage of the underlying dynamics of the phase-space flows to plan the tra-

jectory both locally and globally and switches control at carefully planned time
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instances and places in phase space'. This type of control via phase-space path

planning requires relatively smaller control authority and achieves the desired con-

trol properties otherwise impossible to obtain or difficult to manually synthesize.

It is a small, opportunistic dynamical alteration based on the global knowledge

of phase-space structures. As soon as the system enters the neighborhood of the

desired state, a local linear controller stabilizes the system at the desired location.

4.2.3 Planning control paths with flow pipes

The geometric modeling of a phase space with flow pipes makes the phase-space

control planning and navigation feasible. Given a discrete set of possible control

actions, the search for a control path from an initial state to a destination is

a reachability problem, i.e., the problem of finding a sequence of connected path

segments each of which is under a single control action, as schematically illustrated

in Figure 4.1. This point-to-point planning can be naturally executed in the flow-

pipe representation of phase spaces: the system can travel along one flow pipe for a

while, switch to a new control action, jump onto another flow pipe, and eventually

arrive at the goal.

To make this approach computationally feasible, the phase portraits of the

dynamical system indexed by different control actions are first parsed into a discrete

set of trajectory flow pipes. These flow pipes are then aggregated to intersect each

other and pasted together to form a graph, the flow-pipe graph. The flow-pipe

graph is a directed graph where nodes are intersections of flow pipes and edges

are segments of flow pipes. The graph may contain cycles. The initial state and

the goal state are nodes in the graph. Each edge, a segment of a flow pipe, of the

graph is weighed according to traveling time, smoothness, etc. The weight can be

a single value or a range of values. With this representation, the search for optimal
pi,tiis is formulated as a search for shortest paths in the directed graph.

Since a flow pipe models a bundle of similar trajectories, it provides room for

a small deformation of the reference trajectory within the flow pipe at runtime.

This is useful as the synthesized reference trajectory often has to be modified to

accommodate uncertainties and noise.

'Variable-structure control [23] also composes phase spaces along switching surfaces. However,

our method differs fundamentally from the variable-structure control in how the phase-space
trajectory flows are modeled and utilized in the search for global control paths.
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Figure 4.1: Search for a control path from an initial point to a goal point in a stack

of phase portraits.
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Figure 4.2: The Phase Space Navigator

4.3 The Phase Space Navigator

We present a general, two-stage architecture for the autonomous synthesis of non-

linear controllers in phase space. The Phase Space Navigator serves as the pro-

totype for the architecture. It has two main modules: the planning module and

the tracking module. The planning module synthesizes a desired trajectory, the

reference trajectory, in phase space based on the dynamics of the nominal model.

The tracking module follows the reference trajectory and reactively corrects local

deviations. The parameters of the nominal model are estimated at runtime and

the model is updated. When the dynamics changes significantly, the reference tra-

jectory is resynthesized. Figure 4.2 shows the interplay between the two modules

in the context of controlling a real physical plant.

4.3.1 Reference trajectory generation

The planning module consists of a global path planner and a local trajectory gener-

ator. The global path planner finds coarse global paths from the initial state to tile

goal state, utilizing the flow pipes of trajectories. The local trajectory generator fits

smooth trajectory segments into the global path by slicing out trajectory segments
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Figure 4.3: Reference trajectory generation

from flow pipes or through local trajectory deformation. Figure 4.3 illustrates the

data flows among components of the planning module.

Global path planner

The global path planner searches for optimal paths from an initial state to a goal

state in the phase space, subject to design constraints such as fast convergence

and little overshooting. The high-level qualitative description of the phase space

guides the search.

To synthesize a global path, MAPS first explores in a set of phase portraits

indexed by the selected values of the control signal. It generates a sequence of

phase-space descriptions summarized in a geometric vocabulary. Flow pipes are
then extracted from the descriptions. The global planner searches for a pipe path

- a sequence of flow pipes interconnected at intermediate points - from the initial

state to the goal state in this collection of flow pipes.

For stabilization problems, we need to synthesize an attractor at the goal state.

When the system enters the neighborhood of the goal state, a linear feedback

controller is switched in to stabilize the system at the goal state.
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Local trajectory generator

The local trajectory generator produces smoothed trajectories connecting inter-

mediate points. More specifically, trajectory segments are extracted from the flow

pipes forming the global path. A trajectory segment is extracted from a flow pipe

and is continuously deformed to connect intermediate points in the path. Tile

local trajectory generator also smooths out sharp interconnections of trajectory

segments to reduce undesired transients, with local linear controllers or local slid-

ing surface insertion [45]. The noise and certain type of parametric uncertainties

of the synthesized reference trajectory are modeled with a thickened trajectory. To

guarantee the robustness the thickened trajectory segment is restricted within tile

flow pipe that contains the original reference trajectory segment. However, the

method discussed here assumes that the model has no parametric uncertainties

or structural uncertainties that change the topological structures of phase space;

these kinds of uncertainties include model order uncertainties or unmodeled high-

frequency dynamics.

The planning module generates a plan, i.e., the reference trajectory along with

the control action for each segment of the reference trajectory.

4.3.2 Reference trajectory tracking

The tracking module follows the planned trajectory and reactively corrects the

deviation due to uncertainties in the modeling of dynamics, disturbances, etc. The

tracking is usually local to the region of the phase space containing the trajectory

segment; see Figure 4.4. The planned reference trajectory provides tile global

feedforward reference term. The sensor and estimator measure the actual state,

whose difference from the reference term is the local feedback correction term.

Trajectory tracking and reactive correction

The Phase Space Navigator tracks a synthesized reference trajectory by sensing

the state of the system, comparing the state with the reference trajectory, and

computing the current control action. This tracking requires that the full state of

the system be observable. If the system stays within the tolerance of the reference

trajectory, the controller simply looks up a control action in the planned trajec-

tory. If the system deviates from the desired trajectory, a local linear controller is

switched in to force the system back on track. The trajectory correction is local
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and reactive. It is designed to ensure the robustness of the system in the presence

of noise in measurements and small changes in system parameters that do not lead

to bifurcations.

Model updating and reference trajectory resynthesis

The tracking module estimates the model parameters through the observables and

updates the nominal model. When the dynamics of the system changes substan-

tially such that the planned global path is no longer feasible, the Phase Space

Navigator calls the planning module to synthesize a new reference trajectory.

4.3.3 The autonomous control synthesis algorithms

We consider a control system x' = f(x, u), where x E Rn is the state variable

and u E R' is the control parameter. The initial state of the system is x, and

the goal state for the system to reach is x.. The set of admissible values for the

control parameter u is {ui}. The planning algorithm searches for paths from x. to
xg, subject to certain design constraints, in the phase spaces indexed by control

parameter values {ui}. The tracking algorithm follows the synthesized reference

path.

Algorithm 4.1 The trajectory planning algorithm:

1. Generating phase portraits and parsing them into flow pipes:

Generate a collection of phase portraits indexed by {ui}. Parse each of the phase

portraits into flow pipes.

2. Constructing flow-pipe graph:

Aggregate flow pipes to form flow-pipe graph. Make x, and xg to be nodes in the
graph. Weigh each edge of the graph with the cost of traversing the edge.

3. Testing reachability of goal xg:

Cluster the flow-pipe graph into flow-pipe path components. If z, and xg are in the
same flow-pipe path component, go to Step 6. Otherwise, the goal is unreachable

with the given set of parameter values {ui}; continue.

4. Searching for partial paths from x, to xg:

Compute the reachable set R.., from zx and the reverse reachable set R,9 from x9 in
the flow-pipe graph. Denote the gap between R., and R.g to be G = IIR., - Rý,11.
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5. Tuning control parameter:

Search for a value of the control parameter u outside {ui} such that the corre-

sponding phase portrait has flow pipes that, when added to the flow-pipe graph,

reduce the value of G. If G is zero, i.e., the gap between Rx, and R1 9 is bridged,

collect the flow-pipe paths from x, to x. and go to Step 7. Otherwise, repeat

Step 5 until there are no more parameter values to search, in which case return

the collection of partial flow-pipe paths from x. to x,.

6. Finding flow-pipe paths from x, to xg:

If looking for the shortest paths from x, to xg, run a standard shortest path

algorithm on the graph. If searching for all paths p from x, to xg subject to the

constraint C(p) < C, use the following algorithm2 .

(a) let Pglobal.-paths = 0; Ppartial-paths = {(Xs, Xs)}.

(b) for each path Pi E Ppartial-paths, ending at xi, do

Pi= {pi * (xi, x)Ix one edge reachable from xi, x 5 x.,

C(pi) + W(xi, x) < C};
P'A, = {pi * (xi, x)Ix one edge reachable from xi, x = xg

C(p ) + W(xi ,X) <_ C};
Ppartial-paths = (Ppartial-paths - Pi) U Ppi;

Pglobal-paths - Pglobal-paths U P'

(c) if Ppartial-paths $ 0, goto (6b); otherwise, continue.

(d) if PgLoba.-paths = 0, goto Step 4; otherwise, continue.

(e) order paths in Pglobal-paths according to their costs and return.

7. Generating trajectory segments:

Select a representative trajectory segment from each flow pipe forming the flow-

pipe path from x, to xg and paste them together at intersections of flow pipes.

8. Smoothing trajectories:

Smooth each intersection of trajectory segments through trajectory homotopy de-

formation. Order the smoothed trajectories with costs and return.

Algorithm 4.2 The trajectory tracking algorithm:

2Note that in the discussion C(pi) is the cost of a path pi, W(zi,xj) is the weight of the edge
(xi, x j), and "*" is the path composition operator.
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1. Sensing and estimating the physical system:

Sense the state x of the physical system, estimate the model parameters, and

update the nominal model of the system. If x is in the neighborhood of the goal

xg, go to Step 5. If the nominal model changes substantially, signal and go to

Step 4. Otherwise, continue.

2. Computing control action:

Based on the synthesized reference trajectory and the observation from Step 1,

compute control tracking term Utrack and correction term Ucorrect. If Ucorrect iS

unobtainable with a local linear correction, check alternative paths to the goal

from the collection of suboptimal paths. If the goal is unreachable, go to Step 4.

Otherwise, the control action is u = Utrack + Ucorrect; continue.

3. Generating control action:

Tune the control parameter to Utrack and generate Ucorrect with a local linear

feedback controller. Drive actuators and go to Step 1.

4. Resynthesizing reference trajectory:

Call the planning module to resynthesize a reference trajectory and go to Step 2.

5. Goal stabilizer:

Stabilize the system at xg with a local linear controller, subject to uncertainties

and noise.

Figure 4.5 shows the flow chart of the planning algorithm. The algorithm takes

as input the system model, allowable control parameter values, design constraints,

and desired control objectives. It outputs a synthesized reference trajectory in

the form of a list of tuples: (time, switching point, control parameter value).

The planning module has been implemented in Scheme. We will describe how

the planning module synthesizes a control law for stabilizing a buckling column.

The tracking algorithm described above provides a conceptual framework, whose

implementation is an immediate goal of future research.

4.3.4 Discussion of the synthesis algorithms

On-line and off-line synthesis

The planning module generates smoothed reference trajectories in the phase space.

The constraints on response time and the availability of computational resources
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Figure 4.5: The flow chart of the trajectory planning algorithm of the Phase Space

Navigator.
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dictate whether the computation of planning is done on-line or off-line. If the

planning is done off-line, the synthesized plan is compiled into a table. At the run-

time the controller performs a table lookup for a control action. On-line reference

trajectory synthesis and tracking require substantial computational power. The

Supercomputer Toolkit [4] provides an ideal platform for experimenting with the

above control synthesis algorithm on real-time control applications.

In Step 1 of Algorithm 4.1 for planning, the phase-space structure and flow

descriptions can be either computed once for all the control parameter values or

generated on demand in the search for optimal paths. The latter case will be more

suitable for on-line synthesis.

Generalizations of the point-to-point planning

We present the planning algorithm for a control design problem with one initial

state and one goal state. The algoiithm also applies to control systems of "one

initial state/many goal states", "many initial states/one goal state", or "many

initial states/many goal states".

For a "one initial state/one goal state" or "one initial state/many goal states"

problem, the Dijkstra's algorithm for the single source shortest paths in a directed

graph runs in O(V 2) for a graph with V vertices and E edges [11].

A "many initial states/one goal state" problem can be converted to the "one

initial state/many goal states" problem by reversing the directions of all edges; and

a "many initial states/many goal states" problem is solved by the Floyd-Warshall

algorithm in O(VI) [11].

Discrete vs. continuous control parameter spaces

A version of the synthesis algorithm is presented for the control parameter initially

taking values from a finite discrete set. An example of such finite-valued control

systems is the satellite attitude controller, which stabilizes the antenna direction

of the satellite subject to disturbances by turning on or off high thrust jets. Other

such examples are switching power regulators.

The method also applies to control systems with continuous, multiple control

parameter spaces. The program uniformly samples the continuous parameter space

at discrete points and then applies the algorithm on these control points. A much

better approach, however, would search for "land-mark points" that delimit dis-
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tinct behaviors and then partition the parameter space into equivalent subspaces.

For example, the Bifurcation Interpreter [3] can be employed to search for the

bifurcation points defining qualitative changes in dynamics and decompose the

parameter space into topologically equivalent subparts.

Suboptimal control paths

The algorithm finds optimal paths in the flow-pipe graph. However, the subop-

timal paths can be useful when the optimal paths are no longer judged feasible.

They can be stored in the table in addition to the optimal ones. A controller can

opportunistically choose among available trajectory paths according to the desired

properties at a control switching point.

Comparison with dynamic programming

To synthesize an optimal control path, dynamic programming discretizes a state

space and conducts a fine-grain search in the discretization. The cost of the ex-

haustive search could be prohibitive for large regions or in higher dimensions. In

contrast, the Phase Space Navigator searches for control paths in a manageable

set of flow pipes. It is possible to use dynamic programming within a flow pipe,

once the global path has been established.

4.4 An Example: Stabilizing a Buckling Column

We illustrate the mechanism of the Phase Space Navigator with a control synthesis

for stabilizing a buckling steel column. The buckling motion of the column has

been extensively studied in nonlinear dynamics from a theoretical point of view

and in structural engineering by practicing engineers. The columns are commonly

used as strengthening elements in structures; for example, flexible space structures

use columns in large operating regions. Study in nonlinear dynamics shows that a

slender steel column can exhibit very complicated dynamical patterns under vari-

ous operating conditions. Therefore, it is important to understand the dynamical

behaviors of the columns and to devise ways of preventing them from failure. We

will use the Phase Space Navigator to analyze the behaviors of the column and to

synthesize a nonlinear controller for stabilizing the column.
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P

Figure 4.6: Buckling of a thin elastic steel column due to axial end loads.

4.4.1 The column model

A thin elastic column, subject to axial end compressive loads, buckles around
the principal axis, as shown in Figure 4.6. The nonlinearity is introduced by the

nonlinear geometric stiffness of the column [31]. Stoker [47] gave a simplified model
for the column subject to axial compressive force and viscous damping

mx" + cx'+ aix + a3x3 =0, (4.1)

where a, = A + C - 2P/l and a3 = B + D - P/l3. The state x is the characteristic
measure of the column deflection from the principal axis and x' is the velocity.
The column has mass m and length 21. The axial load is P, and the coefficient of
viscous damping is c. The bending stiffness is modeled by a primary hard spring

with restoring force Ax + Bx3 and a secondary hard spring with restoring force

Cx + Dx3 . We rewrite equation (4.1) as a system of first-order equations

X1 =X2 (4-2)

where x, represents the deflection and x2 represents the velocity.

The system (4.2) describes the buckling motion of the column and represents
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Figure 4.7: The buckling column: the phase space of a buckling column showing
the stability boundaries and connecting trajectories. The horizontal axis x is the
characteristic measure of the column displacement from its principal axis and the
vertical axis x' is the velocity.

only a single mode of vibration. For a long and slender column, vibrations are
observed to occur primarily in the first mode [32].

When the axial load P is less than the critical load Pijitiai, the column oscillates
around the principal axis and returns to the vertical state. It has only one stable
state corresponding to the attractor at the origin of the phase space. Under a
heavier load, i.e., P > Pcritica, the column buckles to one side or the other. The
phase space has a saddle at the origin and two attractors symmetrically arranged
about the saddle; see Figure 4.7. The positions of the two buckled states depend
on the external load P, the stiffness of the column, and the length I. The larger
the load is, the farther away the buckled states are from the principal axis. The
column breaks when the buckling exceeds certain limit. As P surpasses PijJ,,
the column undergoes a pitchfork bifurcation of equilibria [18]: the attractor at
the origin gives birth to a saddle at the origin and two attractors on two sides.
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4.4.2 Extracting and representing qualitative phase-space

structure of the buckling column

MAPS automatically analyzes the column model in the phase space and extracts
and represents the qualitative phase-space structure [54]. For parameter values
a,/m = -2.0, a3/M = 1.0, and c/m = 0.2 and phase-space region -3.0 < x, _• 3.0
and -4.0 _< x 2 _< 4.0, the program reports the following findings and represents
them internally in a relational graph:

<equilibrium-points:

equilibrium 1. (attractor at (1.41 0.))

equilibrium 2. (saddle at (0. 0.))

equilibrium 3. (attractor at (-1.41 0.))>

<trajectories:

<boundary-traj ectories:

trajectory 1. (from *infinity* to (0. 0.))

trajectory 2. (from *infinity* to (0. 0.))>

<connect ing-traj ectories:

trajectory 3. (from (0. 0.) to (-1.41 0.))

trajectory 4. (from (0. 0.) to (1.41 0.))>>

<stability-regions:

stability-region 1.

attractor at *infinity*

stability-boundary: ()

connecting-trajectories: ()

stability-region 2.

attractor at (1.41 0.)
stability-boundary: (trajectory 2. trajectory 1.)
connecting-trajectories: (trajectory 4)

stability-region 3.
attractor at (-1.41 0.)
stability-boundary: (trajectory 2. trajectory 1.)
connecting-trajectories: (trajectory 3)>

The program finds two attractors at (1.41,0.0) and (-1.41,0.0) and a saddle at

the origin. It generates a high-level description of the phase-space geometry: two

banded stability regions associated with the two attractors, separated by the sta-

ble trajectories of the saddle at the origin. Figure 4.7 shows stability boundaries
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Figure 4.8: The buckling column: the flow pipe leading to the attractor on the

left.

and connecting trajectories of the two stability regions. Based on the geomet-
ric phase-space representation, the phase space is further modeled with two flow
pipes formed by aggregating geometric pieces, using the flow-pipe construction
algorithm. The pipe boundaries consist of the separatrices of the two stability
regions that approach the saddle and of the trajectories that connect equilibria, as

described by the program in the following:

<flow-pipes:

flow-pipe 1. (from *infinity* to (-1.41 0.))
boundary: (trajectory 2. trajectory 1. trajectory 3.)

flow-pipe 2. (from *infinity* to (1.41 0.))
boundary: (trajectory 2. trajectory 1. trajectory 4.)>

Figure 4.8 shows the flow pipe that ends at the left-hand attractor.

4.4.3 Synthesizing control laws for stabilizing the column

We want to stabilize the column at its vertical state to support the axial end

loads and to prevent it from breaking. Under sufficiently heavy load, the buckling
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motion of the column leads the column to one of the buckled states and, when the

states are far away from the principal axis, induces the failure of the column.

We shall focus on global navigation in phase space that synthesizes global

reference trajectories leading to the desired goal state. Since the design of local

linear controllers is relatively well understood, we shall not discuss the trade-offs

among different designs for linear controllers and shall choose, for the purpose of

demonstration, a simple linear feedback design. Local controllable regions of such

linear controllers are quantified, given available control strength, and are used in

constraining the design of global control paths.

The goal state of the control is the unbuckled state-the saddle at the origin

of the phase space that does not have a stability region. We want to synthesize

a non-zero stability region for the goal and maximize the region. The controlled

column is of the form

{ xi = X2 (4.3)

' = - a 3 x3 - cX2 ) + u,

where u is the control. In the model, mu has the same dimension as the force.

The Phase Space Navigator automatically synthesizes a global trajectory from

an initial state x, to the goal state xg. We consider two cases for the initial state
3

Control design I: stabilizing the buckling motion

The column is initially buckling with sufficient velocity. The initial state x, is far

away from the saddle xg in phase space in this case. The control parameter u takes

its values from a small range around zero.

The Phase Space Navigator constructs a flow-pipe graph from phase spaces of

u = 0 and u =*local-control*, as shown in Figure 4.9. The graph shows the

case when the initial state x, is in the flow pipe ending at the left attractor as

shown in Figure 4.8. Denote by Utu the local controllable region at the goal xg.

The two flow pipes of u = 0 intersect Uth at ul and u2 respectively. The edges ulxg

'We use this example for the purpose of illustrating the Phase Space Navigator. The sys-

tem (4.3) is actually feedback linearizable. A feedback linearization would cancel the nonlinearity

of the vector field in X2 direction. In contrast, our design restrains th,, control to be less than

10% of the vector-field strength in the first case. and less than half of the vector-field strength in

the second case.
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U
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Figure 4.9: The flow-pipe graph for the buckling column.

and U2xg represent flows within UjI produced by the local controller. The paths
(*infinity* --- x, --+ ul - left-attractor) and (*infinity* U2 --* right-attractor)

represent the two flow pipes of the phase space of u = 0.

The Phase Space Navigator finds a simple path from x, to xg in the graph,
consisting of edges Yiuj and u-T-j. Then the program synthesizes an individual
trajectory connecting x. and xg from the flow-pipe path (x-ul, u-i'). To construct
this desired trajectory, the program deforms an uncontrolled trajectory, emanat-

ing from xs, of the flow pipe represented by the edge Y,-u so that the deformed
trajectory enters Ucti. The region UjI is first projected backwards through the flow
pipes to form a goal projection. Figure 4.10 shows the goal projection from Uti-
two thin pipes illustrated in thick solid lines. Then the uncontrolled trajectory is
deformed towards the goal projection. The programmed deformation is designed

to push the trajectory towards the nearest goal projection in the controllable di-
rection x 2. Since the control is more effective when the direction of the vector
field is relatively orthogonal to the controllable direction x2, switching points are
inserted to turn off the controller when the angle between the two directions are

below some threshold.

Consider for example the case when the column is initially at the state (- 1, -3).
The control design is specified as:
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Figure 4.10: The goal projection and the deformation of the trajectory.

control-type: point-to-point

goal-state: (0.0, 0.0)

initial-state: (-1.0, -3.0)

range-of -control: u E C-0.2,0.2]

The Phase Space Navigator designed a control law that brings the column back
to the unbent state. The control law is represented as a list of tuples, each of which
specifies the time, state, and control value for each switching of control:

((time 0.) (switching-state #(-1 -3)) (control .2))

C(time .284) (switching-state #(-1.82 -2.71)) (control 0.))
((time 1.06) (switching-state #(-1.86 2.49)) (control -. 2))
((time 2.71) (switching-state #(1.36 1.82)) (control 0.))
((time 6.76) (switching-state #(-.0023 -. 0692)) (control *local-control*))

Figure 4.11 (a) shows the synthesized reference trajectory originating at (- 1, -3).
The circles indicate places where the control of deformation switches. Each seg-
ment of the reference trajectory delimited by the switching points is under interval-
constant control, as specified by U1, U2, U3, U4, or a local linear control law as
the trajectory is in the vicinity of the goal. The global portion of the reference
trajectory is pushed towards the goal projection with small deformation that is less
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than 10% of the vector field strength at any state or 0.2 in the normalized unit.

whichever is smaller. The position x and velocity v = x' of the controlled column

are plotted against the time t in Figure 4.11(b) and Figure 4.12(c), respectively.

The control u is shown in Figure 4.12(d).

When the goal is not reachable with the current deformation, the synthesis

algorithm tries again with increased control strength if possible. The synthesized

trajectories could be further optimized with variational techniques on the collection

of trajectories within the flow-pipe segments [6].

Control design II: restoring from the buckled state

The column is initially near the buckled state (-1.41,0.0). The control objective

here is to pull the column out of the buckled state and to bring it close to the

unbuckled state. Since the flow pipe containing the initial state does not intersect

UJtI in the down stream, a different control strategy must be employed. The

program uses the following strategy to synthesize a control path.

Assume the initial state of the column is (-1.5, 0.0). The control objective is:

control-type: point-to-point

goal-state: (0.0, 0.0)

initial-state: (-1.5, 0.0)

range-of-control: u E [-1.0, 1.0)

The uncontrolled trajectory from the initial state would spirally approach the

attractor in the clockwise fashion. The control is exerted in such a way as to swing

the trajectory away from the buckled state to approach the goal projection of the

saddle. When the trajectory intersects the goal projection, the control is switched

off so that the system slides along the uncontrolled trajectory. As soon as the

system enters Ua, the linear controller is switched in. The control strength is less

than half of the vector field strength or 1.0 in the normalized unit, whichever is

smaller. The synthesized control law is specified as:

((time 0.) (switching-state #(-1.5 0)) (control -. 187))
((time .001) (switching-state #(-1.s .000187)) (control .187))
((time 1.65) (switching-state #(-1.24 -. 0011)) (control -. 289))
((time 3.19) (switching-state #(-1.66 .0153)) (control .638))
((time 5.92) (switching-state #(-.527 -. 00186)) (control -. 454))
((time 7.74) (switching-state #(-2.02 .0473)) (control 1.))

89



I U

I,".. . ---

Ill '

U 3 

"

1I ' + 

+U4 
r

L I

(a)

x

.-3.

(b)

Figure 4.11: The synthesized control law that stabilizes the buckling column: (a)
the reference trajectory that leads to the unbuckled state corresponding to the

saddle at the origin. The column is initially buckling with sufficient velocity; (b)

the position x of the column plotted against time t. (to be continued)
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Figure 4.12: (cont'd) The synthesized control law that stabilizes the buckling col-

umn: the velocity v(= x') of the column and the control signal u for stabilizing

the column are plotted against time t in (c) and (d), respectively.
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(time 8.08) (switching-state #(-1.75 1.47)) (control 0.))

((time 11.1) (switching-state #(-.049 .00163)) (control *local-control*))

The corresponding reference trajectory is shown in Figure 4.13(a). The control

parameter changes at places marked by circles. The reference trajectory consists of

eight trajectory segments labeled by interval-constant control U1, 1/2, ... , (17, and

a local control law. The first segment (U1) and the last segment (local control) are
very short in length and thus are invisible in the figure. The position x and velocity

v = x' of the controlled column are plotted against the time t in Figure 4.13(b)

and Figure 4.14(c), respectively. The control u is shown in Figure 4.14(d).

Control design III: local control near the goal

A simple local linear controller of the form Ulocal-linear = -klxl - k2x2 is used to
stabilize the system around the goal (see [55] for details). Given the maximum

control strength 0.2 for the linear controller, we choose an over-conservative region

for U1 t1 determined by

U(J = {(x 1 ,x 2) I 10.835x, + 0.550x2 : •0.04, 10.797x, - 0.605x 21 • 0.04}. (4.4)

This Ut, is used in both of the above cases.

4.4.4 The phase-space modeling makes the global naviga-

tion possible

The qualitative description of the phase-space structure and the geometric mod-
eling of the trajectory flows provide a "map" for navigating system trajectory to

the goal in phase space.

The directed graph constructed from the flow pipes is used in searching for

global paths and in determining whether the goal is reachable. The flow pipes

also make it possible to characterize the more microscopic spatial and temporal

relations between the current state and the goal state. For example, the collection

of simplices near the goal forms a neighborhood of the goal that determines whether

or not the trajectory has missed the goal in the flow pipe. The deformation of

global path segments is constrained by reasoning about the spatial relation with

flow pipes.
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Figure 4.13: The synthesized control law for restoring the column from the buckled

state: (a) the reference trajectory that swings the column out of the buckled state;

(b) the position x of the column plotted against time t. (to be continued)
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Figure 4.14: (cont'd) The synthesized control law for restoring the column from

the buckled state: the velocity v(= x') of the column and the control signal u for

rontrolling the column are plotted against time t in (b) and (c), respectively
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4.4.5 Other control problems

The stabilization for a buckling column is closely related to the pole-balancing

problem, where the control objective is to balance a pole at the vertically upward

state. In the phase space of the pole model, the saddle is the upward state of

the pole and the two attractors on two sides of the saddle correspond to the same

downward state of the pole.

The control objective for pole-balancing is to bring the pole to the upward

state from any other positions, even when the pole is initially hanging downward.

The problem has been studied as a standard testbed for many control designs,

most of which focus primarily on linear feedback control in linear regimes. With

our phase-space navigation strategy, a globally stable reference trajectory can be

synthesized, similar to the one for the buckling column discussed earlier.

The optimal design of such trajectories has many practical implications. For

example, the efficiency of cargo handling work at shipyards depends largely on the

operation of overhead cranes [44]. Figure 4.15 illustrates such a crane driven by a

trolley drive motor and a hoist motor. The bottleneck of the ship unloading oper-

ation is the transfer of cargo from a ship to waiting trucks; therefore, minimizing

this transfer time brings about a large cost saving. The planar motion of the load

hanging at the moving trolley can be modeled as a swinging pendulum with a mov-

ing point of attachment and a hoisting cable. The trajectories of such overhead

cranes could be optimally designed with the Phase Space Navigator. This would

be an important step towards the full automation of cargo handling work without

a crane operator.

4.5 Summary of the Chapter

We have developed an autonomous control synthesis method, the Phase Space

Navigator, for synthesizing controllers for nonlinear systems in the phase spaces.

We have discussed primarily finite-valued control systems as examples to illustrate

the method and have noted that the method also applies to control systems with

continuous parameter spaces.

The Phase Space Navigator synthesizes global reference trajectories using knowl-

edge of phase-space structures provided by the modeling and analysis program. A

phase space is modeled with flow pipes that are collections of trajectories hav-

ing the same qualitative behaviors. The flow pipes provide a way to efficiently
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Figure 4.15: The mechanical model for an overhead crane unloading cargo from
ships, reproduced from [Sakawa&Shindo, 1982]. The crane is equipped with a
trolley drive motor and a hoist motor. The planar motion of the load is modeled
as a swinging pendulum hanging at the moving trolley.

search for and reason about global structures of phase spaces. The global nonlin-
ear control synthesis becomes a graph search problem with this representation of
the phase space. We have shown how global reference trajectories can be automat-
ically designed with the example of stabilizing a buckling column. With the novel
idea of grouping an infinite number of trajectories into a manageable collection of
flow pipes, the difficult task of synthesizing a nonlinear controller is formulated
as a computational problem that requires a combination of substantial numerical,
symbolic, and combinatorial computations and spatial reasoning techniques.

The leverage of the automatic synthesis method comes from applications whose
operating regions are grossly nonlinear and on which high-performance global con-
trollers are impossible to synthesize with traditional techniques. In the next chap-
ter, we will demonstrate the application of the Phase Space Navigator to the design
of a maglev controller. Other potential engineering applications include large flex-
ible space structures, robot manipulator planning, satellite attitude control, and
switching power regulators.
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Chapter 5

An Application: Design of a

Maglev Controller

This chapter studies a magnetic levitation system and applies the machineries of

the Control Engineer's Workbench developed in Chapters 3 and 4 to the design of

a stabilizing controller for the system.

The Workbench has helped synthesize a global, nonlinear controller for the

nominal model of a German maglev system1 . We describe the systematic state-

space design method for determining the global switching points of the controller.

The synthesized control system can stabilize the maglev vehicle with large initial

displacements from an equilibrium. The simulation shows that our nonlinear con-

troller possesses an operating region more than twenty times larger than that of

the classical linear feedback design for the same system.

5.1 Introduction

Magnetically levitated trains provide a high speed, very low friction alternative to

conventional trains with steel wheels on steel rails. Several experimental maglev

systems in Germany and Japan have demonstrated that this mode of transporta-

tion can profitably compete with air travel. More importantly, maglev transporta-

tion can ease traffic congestion and save energy [14, 28, 50].

'The maglev stabilization problem was suggested to the author by Professor Richard Thornton

of Electrical Engineering at MIT, who is leading the MIT Maglev Consortium. The result of the
work described here appears in a paper [56] to be presented at the 31st IEEE Conference on

Decision and Control. December 1992.
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Maglev transportation uses magnetic levitation and electromagnetic propul-
sion to provide contactless vehicle movement. There are two basic types of mag-

netic levitation: electromagnetic suspension (EMS) and electrodynamic suspension

(EDS). In EMS, the guideway attracts the electromagnets of the vehicle that wraps
around the guideway. The attracting force suspends the vehicle about one cen-

timeter above the guideway. In contrast, the EDS system uses repulsive force.

induced by the magnets on the vehicle, to lift the vehicle.

5.2 The Maglev Model

An attractive system such as the EMS system is inherently unstable. We consider
the control design for stabilizing an EMS-mode train traveling on a guideway-a

simplified model for the German Transrapid experimental system. The Transrapid

system is schematically shown in Figure 5.1. It uses attractive magnetic forces to
counterbalance gravitational forces.

The state equations for the magnetically levitated vehicle and the guideway are

described by
(dx _z(V,-Rx) + Ek

dt Lozo L Z
J =. _ L . 2  (5.1)dt g M

dz2=

where the state variables x, y, and z represent coil current in the magnet, vertical
velocity of the vehicle, and vertical gap between the guideway and the vehicle,

respectively. The control parameter is the coil input voltage Vi. The other param-
eters are the mass of the vehicle m, the coil resistance R, the coil inductance LO
and the vertical gap zo at the equilibrium, and the gravitational acceleration g.

Details of the derivation of the model are discussed in [49]. The nonlinearities of
the system come from the nonlinear inductance due to the geometry of the magnet

and the inverse square magnetic force law.

The system has one equilibrium state at which the magnetic force exactly
counterbalances the force due to gravity and the vehicle has no vertical velocity and

acceleration. However, the equilibrium is a saddle node which is not stable. The
control objective, therefore, is to stabilize the vehicle traveling down the guideway

and maintain a constant distance between the vehicle and the guideway despite
any roughness in the guideway. The available control input is the coil input voltage

Vi in the model (5.1). We further assume that V, is produced by a buck converter
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Figure 5.1: EMS maglev system for high-speed ground transportation, represent-

ing a simplified drawing of the German Transrapid design. (a) Electromagnetic

suspension (from [MTAC Report 1989]); (b) Detail of a suspension magnet, super-

imposed on the field distribution (from [Eastham 1989]).
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capable of delivering any voltage from 0 to 300 volts.

A linear control design for the maglev system described in [49] uses the pole-

placement method. The system is first linearized around the equilibrium. The

linearized system has unstable poles, i.e., the poles in the right-half of s-plane.

A linear feedback is introduced to move the poles to the desired locations in the

left-half of the s-plane. Such a control design can bring the system back to the

equilibrium with an initial displacement of up to 0.2mm from the equilibrium. The

linear controller saturates at the beginning for larger initial displacements. This

is because the linearized model no longer approximates the original system well

in regions far away from the equilibrium. A global, nonlinear control law such as

a bang-bang control that respects the nonlinearity of the system must therefore

precede the linear feedback control. However, the real challenge for the nonlinear

design is to determine the global control law specifying, for instance, the switching

points.

5.3 State-Space Control Trajectory Design

We will describe a nonlinear control design-a switching-mode control-in state

space for the maglev system with large initial displacements from the equilib-

rium. We will show that this controller can be automatically designed with the

Workbench comprising MAPS and Phase Space Navigator developed earlier. Tile

nonlinear controller brings the system to the vicinity of the equilibrium and then

switches to the linear controller.

For the purpose of demonstration, we assume that the vehicle is displaced

from the equilibrium in the direction further away from the guideway. We will

concentrate on the global design of the control reference trajectories and assume

that a linear feedback design is available as soon as the system enters the capture

region of the linear controller.

5.3.1 Modeling state-space geometry

The global control law is designed by analyzing and modeling the state-spacc

geometry of the system. The Workbench explores the state space of the system

and characterizes the state space with stability regions and trajectory flow pipes.

It composes the state spaces for different control parameter values and uses flow

pipes to synthesize a composite state space.
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The state variables x, y, and z in the model are scaled by 1, 10', and 2 x 10'.

respectively. The parameters of model are assumed to be: L0 = 0.1h. zo = 0.01m.

R = ID, in = 10000kg, and g = 9.8rn/sec2 , typical of a large vehicle lift magnet.

Assume the power supply delivers 140 volts, i.e., Vi = 140, at the equilibrium. The
Workbench explores the state space in a region bounded by the box {(x, y, z)Ix E

[0,400], y E [-300, 350], z E [0, 600]} and finds the following equilibrium point:

saddle: #(140. 0. 200.)

eigenvalues: -17.004+22.963i

-17.004-22. 963i

24.007

eigenvectors: #(.23604 .97174 0)

#(.51331 -. 55588 .65384)

#(.30157 .73255 .61027)

With the information about the stable eigenvectors of the saddle, the Work-

bench computes the stable manifold of the saddle, a two-dimensional surface. The

Workbench generates a set of trajectories evenly populating the stable manifold to

approximate the surface. The trajectories are obtained by backward integrations

from initial points in a small neighborhood of the saddle. This neighborhood lies

within the plane spanned by the stable eigenvectors of the saddle.

Figure 5.2 shows the trajectories on the stable and unstable manifolds of

the saddle in the yz-projection of the state space. The stable manifold is two-

dimensional and the unstable one is one-dimensional. The stable manifold sep-

arates the state space into two halves: trajectories in the upper-half approach

z -+ oo along one of the unstable trajectories, corresponding to the case in which

the vehicle falls off the rail; and trajectories in the lower-half approach z = 0 plane

along the other unstable trajectory, corresponding to the case in which the train

collides with the rail.

5.3.2 Synthesizing a global stabilization law

For an initial displacement above or below the equilibrium, the uncontrolled system

will follow either a trajectory traveling upwards with increasing z and leaving the

bounding box or a trajectory traveling downwards and hitting the z = 0 plane. To

stabilize the system at the equilibrium, it is necessary to synthesize a new vector

field on both sides of the stable manifold so that trajectories travel towards the
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Figure 5.2: Stable and unstable manifolds of the saddle for Vi = 140 (yz-

projection).

stable manifold of the saddle in the new vector field. We consider only the top-half

here.

The Workbench first explores the state space of the model for different values

of Vi and concludes that the larger the Vi is, the further away the stable manifold

is from the z = 0 plane. For Vi = v > 140, the region sandwiched by the stable

manifold of Vi = 140 and that of Vi = v has the desired property-the vector field

of Vi = v in this region is pointed towards the stable manifold of Vi = 140. When

v = 300, the region is maximized.

Similarly, the Workbench finds that the model with Vi = 300 has a saddle node
at (300., 0., 428.57). The stable manifold of the saddle has a similar structure as

that of Vi = 140 case, but with larger z coordinate. The yz-projection of the stable

manifold and unstable trajectories for Vi = 300 is shown in Figure 5.3. Appendix A

contains the information about the saddle for Vi = 140 and Vi = 300.

Figure 5.4 shows the yz-projection of the sandwiched region discussed above.

The region is bounded by three pieces of triangulated surfaces, the top boundary

shown in Figure 5.5(a), the side one in Figure 5.5(b), and the bottom one in

Figure 5.5(c), respectively. The top boundary represents the stable manifold of

the saddle for Vi = 300 and the bottom one for Vi = 140. The trajectories of
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Figure 5.3: Stable and unstable manifolds of the saddle for Vi = 300 (yz-
projection).

Vi = 300 flow into the region from the side boundary in Figure 5.5(b) and leave
the region at the bottom boundary in Figure 5.5(c). There is no flow across the
top boundary in Figure 5.5(a).

The Workbench determines that the above region consists of two trajectory
flows: the one for Vi = 300 that flows into the region on the side boundary and
pierces through the bottom boundary, and the one for Vi = 140 on the bottom
boundary that approaches the desired equilibrium in the limit. With the flow-pipe
characterization of the state-space trajectory flows, the Workbench searches for

control trajectories in this set of flow pipes and finds a sequence of flow pipes that
lead to the desired goal: the composite of the trajectory flow for Vi = 300 and the
flow for Vi = 140, glued together at the stable manifold of Vi = 140 represented by
the bottom boundary of Figure 5.5(c). As a result, all the trajectories of Vi = 300
within the region can be brought to the equilibrium by switching to Vi = 140

as soon as the trajectories hit the bottom boundary. We call this region the

controllable region for the system, as shown in Figure 5.4.

Since the bottom boundary is an approximation to the true stable manifold,

the trajectories of Vi = 140 on the boundary can only get close to the desired

equilibrium. The closeness depends on the quality of the manifold approximation.
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Figure 5.4: The sandwiched region in yz-projection.
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(a)

(b)

(c)

Figure 5.5: The boundaries of the sandwiched region in yz-projection: (a) top

boundary; (b) side boundary; (c) bottom boundary.
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As the trajectories enter a small neighborhood of the equilibrium, we use a linear

feedback controller, such as the one discussed in [49], to stabilize the system at

the equilibrium. Figure 5.6 shows the synthesized control reference trajectories

originating at different initial displacements from the equilibrium: 1mm, 4mrm,

4.5mm, and 5mm. The controller is able to recover from the first three initial

points that are within the region. The last point is outside the region and thus

uncontrollable; the current in the magnet can not build up fast enough to keep

up with the ever-increasing airgap. The complete print-out of the synthesized

reference trajectories showing the switching points is in Appendix B.

For example, the control law for the initial displacement of 1mm is specified

as:

((time 0.) (sw-.tching-state #(140. 0. 220.)) (control 300.))

((time .0134) (switching-state #(163. 4.44 221.)) (control 140.))

((time .127) (switching-state #(139. .0789 202.)) (control *local-control*))

This control law specifies the time instance for each switching, the switching

state, and the corresponding control value during the following time interval. The

corresponding reference trajectory consists of trajectory segments delimited by

these switching states.

5.3.3 Evaluating the control design

The synthesized global control law is a switching-mode one that changes the control

parameter at the switching surface-the stable manifold of V, = 140. It is able to

bring trajectories originating from any states within the controllable region to a

local neighborhood of the saddle.

The responses of the controller with respect to the four different initial displace-

ments are shown in Figures 5.7 and 5.8. The vertical axis of each graph represents

state variables x, y, and z as in the maglev model (5.1), one for each curve, and the

horizontal one represents the time. For all the controllable initial displacements,

the controller is able to bring the system back to the equilibrium with errors less

than 0.2mm in displacement-a distance within the capture range of the linear

feedback controller.

By exploring the state-space geometries of the maglev system, the Workbench

is able to automatically determine the switching points for the global controller.

The linear feedback controller can recover from only displacements of less than
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Figure ,5.6: The synthesized control reference trajectories originating from four
different initial states, together with the controllable region: (a) yz-projection; (b)
zx-projection.
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0.2mm. The global controller has significantly enlarged the operating region of tile

linear controller. With the geometric representation of the controllable region in

state space, the Workbench precisely determined that the maximum recoverable

displacement is 4.55mm. Our simulation geometrically explained the observation

in [491 that the vehicle would fall off the rails with a displacement of 51um or larger.

Many issues remain to be addressed in order to make the control design prac-
tical. Since our control law is designed w'th the nominal model of the maglev

system, the effect of uncertainties in the model and of noise in the environment on

the design needs to be studied in future research. The design call also be optimized

with respect to response time.

5.3.4 Visualizing the design

The synthesized controllable region is modeled with a polyhedral structure. This

structure can be presented to engineers in a visual way. J. Choi has implemented

a graphic rendering program for this purpose. Figure 5.9 shows a picture of the

graphically rendered controllable region. The graphical presentation facilitates in-

teractive, incremental modifications to the design in terms of the geometry. For

example, one might want to directly manipulate the controllable region by tuning

knobs corresponding to parameters. The geometric representation helps the de-

signers to develop intuitions and to visually explore the effects of certain dcsign

choices.

5.3.5 Implementation of the controller

The control design described above has been computationally simulated only. How

will this design be implemented on the real system and used in real time?

The control law specifying the switching surfaces in state space can be com-

piled into a table. The control execution will be a table lookup and a geometric

inequality test. At each step of the execution, the state of the system is sensed

and checked against the switching surface. If the state is on the switching surface,

the corresponding control value for the next time interval is read from the table

and applied to the physical system. The implementation does not have to be very

different from that for a dynamic programming one.
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Figure 5.7: Simulation of the nonlinear control design for different initial displace-

ments. (to be continued)
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Figure 5.8: (cont'd) Simulation of the nonlinear control design for different initial
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Figure 5.9: The controllable region for the maglev control design, rendered with

the light source straight on. Hidden faces and lines are removed.
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5.4 Summary of the Chapter

We have described the automatic design of a high-quality controller for stabilizing

an EMS-mode maglev vehicle traveling above a guideway with the Workbench.

The synthesized control reference trajectory consists of a sequence of trajectory

segments, connected at intermediate points where the control voltage switches. At

run-time, the controller will cause the system to track the reference trajectory and

reactively correct local deviation from the desired trajectory. We have illustrated

the state-space method for designing the global switching points of the nonlinear

controller. The simulation showed that our design allows the maglev train to oper-

ate with much larger disturbances in the airgap than the classical linear feedback

design does.
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Chapter 6

Related Work

This chapter surveys relevant work in areas of simulation and analysis for complex

dynamical systems and nonlinear control synthesis methods. Whenever possible,

the Workbench will be compared with related systems elsewhere.

6.1 Qualitative Analysis of Dynamics

Qualitative analysis of dynamics is concerned with deriving symbolic descriptions
and constraints for the dynamics of a physical system from simulations. The MAPS
program of Chapter 3 falls into this category. Abelson and Sussman described a

collection of computer programs that automatically analyze dynamical systems at
the level of expert dynamicists [1, 2].

Yip has constructed a program, KAM, for automatically analyzing Hamilto-
nian systems with two degrees of freedom in two-dimensional phase sections [52].
The program uses techniques from computer vision to cluster trajectory points in
phase sections and classifies phase portraits into meaningful categories. MAPS
works in the domain of dissipative dynamical systems; it analyzes the systems in

their continuous phase spaces regardless of their dimensions. In contrast, KAM
applies to Hamiltonian maps on two-dimensional phase sections. MAPS constructs
a simplicial representation for the phase-space qualitative features based on geo-
metric pieces, as required by the task of control design. KAM uses a point-set

representation instead.
Sacks' Poincar6 program analyzes planar systems through a partition algo-

rithm on phase spaces and a bifurcation analysis on one parameter [43]. The
partition algorithm determines flow patterns in the plane using the properties of
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two-dimensional flows. These properties are based on the Jordan Curve Theorem

and the fact that trajectories are one-dimensional curves that do not intersect.

However, the special properties about two-dimensional flows do not generalize to

higher dimensions. Recently, Sacks has been exploring the computation of two-

dimensional manifolds in three dimensions using a set of trajectories, similar to

that of MAPS. MAPS does not analyze bifurcations. MAPS differs from Sacks'

partition algorithm in that MAPS is able to analyze phase spaces of any dimeni-

sion, based on a general theoretical result on dynamical systems. In addition to its

reasoning about the phase-space flow patterns, MAPS builds a workable represen-

tation in the form of a relational graph characterizing the spatial arrangement of

phase-space objects. The representation contains information about the geometries

of stability regions.

Eisenberg's Kineticist's Workbench is a program for simulating and explain-

ing chemical reaction mechanisms [15]. It analyzes a chemical mechanism with

numerical integrations and graph algorithms and interprets the simulation results

in an episode data structure. The program does not use phase-space properties

of chemical dynamical systems. Nishida et al. described a program for analyz-

ing second-order nonlinear systems in phase space [341. The program uses a flow

grammar to specify possible patterns of solution curves in the phase plane and is

restricted to two-dimensional flows.

Hsu developed a discrete, cell-based method called cell-to-cell mapping for ap-

proximating state spaces [21]. A continuous state space is discretized into regular

cells forming a cell space. The associated map of a system becomes a cell-to-cell

map which maps one cell to another cell. The cell-to-cell mapping method ap-

proximates the stability region of an attracting cell with a collection of cells that

eventually map to that cell. MAPS does not take this uniform approach. Instead,

it partitions a phase space into discrete regions according to trajectory flow pat-

terns. The partition respects the geometry of the phase space. Because of the

hierarchical (top-down) nature of Hsu's method, it can be integrated with MAPS

in refining an approximation for a stability region.

Much of the difference between MAPS and the above cited work is due to the

fact that the analysis MAPS performs is meant for control design. The representa-

tion in MAPS makes explicit the effects of certain design choices and is meaningful

to control designers. For example, the geometries of stability regions are modeled

in this representation: the sizes of the regions are directly linked to certain design
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parameters.

6.2 Engineering Stability Analysis

Another popular class of methods for engineering stability analysis is the so-called

Liapunov-function based constructions for stability regions (domains of attraction).

Our stability analysis of Chapter 3 does not use Liapunov functions; it is based on

the stability-boundary characterization by Chang et al.

The class of Liapunov-function based approaches arises from the Liapunov the-

ory of stability. It estimates domains of attraction by constructing suitable Lia-

punov functions. A Liapunov function is a family of closed surfaces such that a

system trajectory remains in the region bounded by a surface after the trajectory

enters. The Liapunov function is difficult to construct. Numerous algorithms have

been proposed for this construction. Reference [17] gives a survey of these algo-

rithms. Most of the algorithms assume special forms of the Liapunov functions

and determine the unspecified coefficients in the functions. They usually result

in conservative estimations. Margolis and Vogt [29] used the recursive method of

Zubov for 2nd-order systems. The approach is restricted to systems with nonlin-

earities that possess Taylor series expansion and suffers from non-uniform conver-

gence. Davison and Kurak [12] took the constrained minimization approach to fit

a hyperellipse in the domain of attraction. Vannelli and Vidyasagar [51] used the

concept of maximal Liapunov function to obtain a new partial differential equa-

tion. The partial differential equation provides a basis for an iterative procedure

to compute the domains of attraction.

The complexity of these methods scales with the order of the systems and the

order of the polynomials assumed for the Liapunov function. Manually computing

the coefficients of the polynomials is very tedious. MACSYMA-like symbolic pack-

ages employing computer algebra techniques can automatically determine these

coefficients [42]. Much work remains in the area of applying symbolic methods to

the construction of the Liapunov functions.

6.3 Phase-Space Nonlinear Control

The gain scheduling and cellular control approaches use, to some extent, the phase-

space representation of control systems to design nonlinear control laws. Like Phase
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Space Navigator, they discretize a phase space into regions; but their decompo-

sitions are different and therefore bring to bear a different set of computational

techniques.
In gain scheduling [45], the system is linearized around a priori selected oper-

ating points. A linear controller is designed for each operating point. Interpolation

is used in regions between the operating points. Gain scheduling is an open-loop

adaptation where parameters of a regulator change in a prespecified way. Autopi-
lots and chemical process control are instances of gain scheduling. The method
requires designers to decompose a phase space into locally linear regions. Phase

Space Navigator differs from gain scheduling in that Phase Space Navigator auto-
matically decomposes a phase space, even into regions that are global and nonlin-

ear, and then synthesizes global reference trajectories using the knowledge of the

phase-space decomposition.
We have compared the method of the Phase Space Navigator with the dynamic

programming approach in Section 4.3.4. The cellular control method of Hsu [20]
shares very much the same disadvantages as dynamic programming. The method

is based on the cell state space concept used in the cell-to-cell mapping. It is similar

to dynamic programming in discretizing the state space, but differs in that it also

partitions the cost function space. The control law is synthesized while certain

cost functions are minimized. The control value at each cell state is programmed
into a table. Run-time control is to perform a table-lookup. This method requires

an extensive search for control paths at very fine grain. The number of cells that
the cellular method needs to visit could be very large even in a moderately-high-

dimensional state space. The Phase Space Navigator, however, decomposes the

phase space into a manageable collection of nonuniform subregions, the flow pipes,
and searches for global paths in this collection.

Chaotic dynamical systems have extremely rich behaviors that can be tapped to

design high-quality control systems. Recently, there have been several approaches

to the controlling of chaos. Bradley developed a program called Perfect Moment

that designs control paths for chaotic systems in phase space [8]. The program

identifies phase-space chaotic features like strange attractors and searches for useful

trajectory segments in a gridded phase space discretized into cells. Both Phase

Space Navigator and Perfect Moment construct segmented control paths between

the origin and destination states. Perfect Moment can be very useful in designing

control paths for chaotic systems where the local structures of phase spaces are
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extremely complicated. On the other hand, Perfect Moment could not characterize

the gross geometric features of a chaotic attractor, say the envelope, and use the

global description of the attractor to guide the search; it relies entirely on the

mapping of the grid of cells. Phase Space Navigator assumes there is no chaos.

It searches in a space of flow pipes, as opposed to a grid of cells. It explicitly

models the global geometries of phase space and trajectory flows. Perfect Moment's

gridded search could be combined with Phase Space Navigator's global phase-space

modeling to enhance the search for control trajectories.

The control design method developed in this thesis is not meant to replace other
nonlinear control design techniques. To the contrary, the method complements
the other techniques. The potential of the method in solving real problems can
be fully realized when the method works together with other techniques. For

example, feedback linearization is a well-developed nonlinear design method [45].
The method introduces a state feedback to a nonlinear system to cancel out the

nonlinearity, thereby transforming the system into a linear one. The standard

linear control design can be performed on the linear model. This linear design is
then transformed back to work for the nonlinear system. Feedback linearization

requires that the control input is continuous and the system has no zero dynamics.

In cases when these conditions are met and a feedback linearizing control can be
found, the feedback linearization could be an attractive alternative. On the other

hand, Phase Space Navigator would be superior when, for example, the control
takes discrete values as in switching-mode control.

6.4 Intelligent Control

The area of intelligent control, sometimes called knowledge-based control, has been
very active recently. The knowledge-based approaches include direct expert control

* and indirect supervisory control [27]. The direct expert control encodes simple
control laws into a rule base and invokes them at the run-time. The indirect

approach influences the process by switching on and off controllers and updating

control laws. For example, extreme alarm supervision switches on and off adaptors

by monitoring the input signals and state variables. An intelligent control system

usually has a hierarchical structure. The hierarchy ranks from high-level decision
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making to low-level PID' controls.

Phase Space Navigator can be regarded as one kind of intelligent control, if one
wishes. It encodes deep domain knowledge of phase space and dynamics in the

form of productions rules, algorithms, and other data structures. Different from

the hierarchical structure in intelligent control, Phase Space Navigator consists of a
global path planner and a local trajectory tracker; the two modules are integrated
in a much tighter loop. This tight loop allows control decisions to be revised

more naturally and less costly. For example, when the local tracker cannot correct
trajectory deviation with local means, it calls upon the global planner to synthesize

a new reference trajectory. An "intelligent controller" would have to pass the
request and transform the decision back and forth through the control hierarchy.

'PID stands for proportion, integral, and derivative.
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Chapter 7

Conclusions

7.1 Thesis Revisited

This thesis has developed a flow-pipe based phase-space method for designing non-
linear controllers and a qualitative representation for encoding dynamics. It has
formulated the task of control design and analysis as a computational one in which
computations and reasoning about dynamics are essential. It has constructed a
Workbench comprising the programs MAPS and Phase Space Navigator to as-
sist control engineers and to automate a significant portion of the control design
task. The programs have been applied to the design of a nonlinear controller for a
magnetic levitation vehicle.

MAPS analyzes the phase-space structure of a system in terms of geometric
features. It produces a high-level description of the phase space that can be used
to focus and prune the search for control paths. Because of its human accessible as-
pect, the description provides meaningful information to control engineers in their
design process. Phase Space Navigator automatically synthesizes control reference
trajectories using the phase-space description as a "map". The "map" models the
phase space with trajectory flow pipes and provides an efficient representation for
the search. We described the algorithms for finite-valued control synthesis and
mentioned caveats in generalizing them to continuous, multiple control parameter
spaces in Section 4.3.4. When the computations are tractable, the method has
great leverage for grossly nonlinear systems.

The Workbench embodies domain knowledge from control engineering and dy-
namical systems theory. It understands concepts like asymptotic and transient
behaviors, stability regions, reachable sets, convergence, overshooting, etc. The
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Workbench organizes the modules of analysis, design, and graphics presentation
around the control task and encourages incremental changes to the Workbench, for
example, incorporating programs tailored to particular applications and encoding
knowledge of specific domains. Suppose we want to use the Workbench to design
electric power control systems. In addition to their differential equation models, the
power systems have special structural properties and model formulations that can
be exploited to reduce design complexity and improve design quality. Special pro-

gram fragments exploiting these properties can be integrated into the Workbench.
The integration is made possible and easier by the underlying Scheme implemen-
tation as a substrate. The Scheme programming language facilitates composition
and abstraction of procedures.

7.2 Problems and Future Work

We examine the situations in whIch the Workbench does not work, analyze the
reasons for its breakdown, and suggest further enhancements to the Workbench1

and future areas where much exciting work remains to be done.

MAPS performs stability and flow analysis for a continuous dynamical system
in a bounding box. It assumes that the system contains no chaotic attractors and
fractal boundaries. MAPS can also analyze steady-state trajectories for discontin-
uous systems; in fact, it has successfully analyzed the limit-cycle behaviors for a
switching power regulator, a series resonant converter with clamped tank capacitor
voltage, under various operating conditions [25].

To extend the stability and flow analysis of MAPS to work for systems with
discontinuities is difficult. One reason is that the theoretical basis of the sta-
bility analysis breaks down. Theoretical results for stability characterizations of
discontinuous systems are scarce [16]. Computational simulation and modeling
techniques, combined with ad hoc treatments for limit cycles, could provide an
attractive alternative for analyzing discontinuous systems.

Chaotic attractors are difficult to characterize. The boundaries and the attrac-
tors themselves can be fractal. Their fractal boundaries are typically caused by the
heteroclinic intersections of stable and unstable manifolds. The fine, convoluted
structures pose great problems for numerical algorithms attempting to determine

'Chapter 3 has discussed several extensions to the MAPS program.

120



them. The stability and robustness of the computation is the main issue inI this

case.

The Workbench could be extended to characterize gross geometric features of

chaotic attractors. It could augment purely numerical measures with some invari-

ant, symbolic characterizations. Manv chaotic attractors, for example the R6ssler

band [5], are constructed with a stretching-and-folding operation. The Workbench

could compute the Birkhoff signature encoding the heteroclinic intersections of sta-

ble and unstable manifolds. This symbolic sequence plus the stretching-and-folding

operation can help understand the fractal structures. The Workbench could also

calibrate dimensions of the attractors and determine Liapunov exponents. The

combination of geometric descriptions, symbolic constraints, and numerical mea-

sures can better characterize the fine structures of chaotic attractors.

The Workbench has adopted the Euclidean metric in n-dimensional Euclidean

spaces. However, a different metric, the one on surfaces of manifolds rather than

on their embedding spaces, could also be used. This new metric would be able

to more accurately model the folding of a manifold. The information about the

geometric properties of the manifold can be used to improve the geometric mod-

eling algorithm discussed in Chapter 3. In addition to the metric information, the

Workbench could use certain topological information about the space in planning

control. We have implemented a program for computing the homology group of a

triangulated manifold based oil a reduction algorithm [33]. It will be interesting to

see how we could use this topological property of phase portraits to design control

paths. The Workbench could also be extended to work for other types of spaces

such as projective spaces and tori.

The design capability of Phase Space Navigator can be enhanced with other
optimization techniques. For example, the variational method can be used in

optimizing the local control trajectories after the global path is established. The

cost of the optimization at the stage of local trajectory generation is expected to

be low.

Future research should address the robustness of the phase-space control de-

sign regarding for example model order uncertainties or unmodeled dynamics. The

technique of "thickened trajectory" discussed in Section 4.3 models only measure-

ment uncertainties or noise. The structural uncertainties of the model could change

the topological structure of a phase space. The effect of such uncertainties on the

phase-space reference trajectories remains to be quantified. The thesis has not
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addressed model building for dynamical systems. The Workbench could interface

with a modeling program that allows the Workbench to deal with a wider class of

systems. The modeling program should formulate the most appropriate model for

tile Workbench.

The current implementation of the Workbench is expected to work well for mod-

erately low-dimensional systems. However, "the curse of dimensionality" makes

the computations intractable for high-dimensional systems. This is somewhat a

paradox: high-dimensional, highly-nonlinear systems exhibit richer flow patterns

in phase space and provide more design opportunities for the phase-space method.

However, such advantage is at the expense of more computations. To extend the

applicable range of the method, the efficiency of the geometric algorithms needs

to be greatly improved.

7.3 Broad Implications

The work reported in this thesis has broad implications:

The foremost is its demonstration that controllers for complex systems can be

automatically designed. The work showed that programs can visualize qualitative

behaviors in phase space; programs can plan control trajectories and steer systems;

and the phase-space geometric modeling provides a "map" for navigating systems

in phase space.

Second, novel computational representation and reasoning mechanisms can be

developed in the context of automating challenging engineering tasks. The dynam-

ics of nonlinear systems is difficult to describe and manipulate. The qualitative

representation developed in this thesis provides a way to computationally describe

the qualitative aspects of the dynamics. With this representation, the difficult con-

trol design is translated into a computational task: the flow-pipe based mechanism

manipulates a system's natural dynamics and synthesizes the desired dynamics for

the system.

Third. the domain knowledge and techniques from symbolic, numerical, and

geometric computing have been proven essential. In order to fully exploit the dy-

namics and to build programs to imitate human control designers, the Workbench

uses whatever knowledge and techniques that are necessary: geometric theory of

dynamical systems, control theory, and techniques from artificial intelligence, vi-

sion. computational geometry, numerical analysis, and graph search.
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Fourth, the complexities of the control design task necessitate the need for

automatic modeling and analysis tools. Autonomous programs like those in the

Workbench have extended the capabilities of the "eyes" and "hands" of control

engineers in seeing and manipulating objects. They have enlarged the design space

engineers can explore. In certain cases, programs can even outperform human

designers.

Fifth, the phase-space trajectory planning has the potential of becoming a pow-

erful new paradigm for nonlinear control synthesis and a complementary alternative

to other control design techniques.

Finally, the potential applications of the Workbench are numerous: (1) Large-

scale power systems are difficult to analyze and control. A power systnm needs

to be analyzed in terms of its stability margin. It needs to be brought back to

the original equilibrium after a power outage. The Workbench could be enhanced

to provide geometric means for the stability analysis and possibly for the control

trajectory design. (2) Vehicles like the maglev trains and automobiles usually use

passive suspension to dampen disturbances caused by road irregularities and wind

loads. It is conceivable that such disturbances could be compensated with active

actuation. This technology is called active suspension. In the maglev example, it is

possible to characterize the guideway irregularities; thus active suspension could be

an attractive candidate. The Workbench can help in designing such a secondary

suspension for the maglev vehicle that will complement the primary suspension

(magnetic levitation) designed in Chapter 5. (3) Large flexible space structures

use thin beams as building blocks in structures like the truss. These beams work

in nonlinear regions. The Workbench can be used to study the buckling of the

beams and explore control schemes to strengthen them. There are many more

areas where the Workbench will find itself useful.

7.4 Towards A Language for Computational Control De-

sign

We outline a computational language with which one can describe aspects of the

control design. Although the language is in a very preliminary form, elucidating

basic constructs and properties of the language helps capture the informal design

procedures and serves as a stepping stone for formalizing the knowledge of control

engineering.
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Professional control engineers make use of implicit working knowledge such

as the phase-plane method and work at different design levels towards the goal.

By expressing the informal design knowledge explicitly in computational terms,
we are able to build programs to manipulate the knowledge. mechanize certain

laborious tasks, communicate the knowledge more effectively to other designers,

and improve education in control engineering. In addition, the language provides

means for building design abstractions, for capturing design rationales, and for

addressing computational complexities of the design.

The design language consists of a set of primitives and operations on the prim-

itives. The primitives are phase portraits segmented into flow pipes. We call these

segmented portraits the flow-pipe portraits. The operations combine these flow-

pipe portraits to form new ones. An operator also takes conditional choice as an

argument. In composing two flow-pipe portraits, the operator intersects the flow

pipes in the portraits and glues them together at intersections. The choice infor-

mation specifies for flow pipes which way to go at each intersection. The semantics

of the language is dictated by the underlying dynamics of the system and the con-

trol task. For example, an intersection of two flow pipes is specified as a geometric

intersection of their polyhedral approximations.

We express the phase-space control design in a high-level form with this lan-

guage: the control design is the composition of flow-pipe portraits. The opti-

mization of the design is equivalent to the minimization of certain measure in the

composition process. When an optimization criterion is specified, the composition

process constructs the flow-pipe portrait containing the optimal control path.

7.5 The Big Picture

The domain of control synthesis is interesting to study for several reasons. First,

the computational codification of engineering knowledge such as the knowledge

of control design enables us to distill and communicate principles of engineering

design in a more explicit way. Second, practical control systems are extremely

useful but are often difficult to design. Intelligent design aids for control engineers

like the Control Engineer's Workbench can improve the design quality and increase

the productivity.

I am convinced that high-performance computational techniques have great

potentials in revolutionizing traditional engineering computation and design, and
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research investigating challenging real-world problems serves as a driving force for

the development of computer science and artificial intelligence. This thesis serves

as an instance for demonstrating my conviction.

This work has primarily focused on the automatic synthesis of global nonlin-

ear controllers and has not addressed the important issues of modeling, sensing.

estimation, and high-quality linear controller design. The exploration and de-
velopment of a collection of new methods tackling these issues in all dimensions

can revolutionize the synthesis and analysis of high-performance nonlinear control

systems.

The research described in this thesis actively exploits new synergies among

artificial intelligence, computer science, applied mathematics, dynamical system

theory, and control engineering and develops appropriate computational techniques

to tackle real problems in engineering. The Control Engineer's Workbench is a

prototype of a new class of intelligent computational tools that combine numerical

and symbolic computations with Al reasoning techniques and automatically model,

analyze, and design complex physical systems. These tools, when used as human

aids, will greatly amplify and extend our capabilities in seeing and manipulating

the world around us.
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Appendix A

Maglev Application: Equilibria

The equilibria for V, = 140 and V = 300:

; Vi = 140

((#(140. 0. 200.) ; equilibrium point #(x y z)

(-17.004+22.963i ; eigenvalue 1

-17.004-22.963i ; eigenvalue 2

24.007) ; eigenvalue 3

(#(.23604 .97174 0) ; eigerivector 1

#(.51331 -. 55588 .65384) ; eigenvector 2

#(.30157 .73255 .61027)) ; eigenvector 3

saddle)) ; stability type

Vi = 300

((#(300. 0. 428.57) ; equilibrium point #(x y z)

(-21.411+21.394i ; eigenvalue 1

-21.411-21.394i ; eigenvalue 2

21.394) ; eigenvalue 3

(#(.54819 .83636 0) ; eigenvector 1

#(.43085 -. 65947 .616) ; eigenvector 2

#(.23229 .71052 .66423)) ; eigenvector 3

saddle)) ; stability type
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Appendix B

Maglev Application: Synthesized

Reference Trajectories

This appendix contains the initial, switching, and final points of the synthesized

reference trajectories starting from four different initial states, as shown in Fig-

ure 5.6. Each point in the print-out is a vector of (t, x, y, z).

trajectory 1

init-pt: #(0. 140. 0. 220.)

((time 0.) (switching-state #(140. 0. 220.))

(control 300.))

((time .013441) (switching-state #(162.98 4.4416 221.42))

(control 140.))

((time .12704) (switching-state #(139.39 .078872 201.75))

(control *local-control*))

; trajectory 2

; mnit-pt: #(0. 140. 0. 280.)

((time 0.) (switching-state #(140. 0. 280.))

(control 300.))

((time .10156) (switching-state #(276. -74.214 338.79))

(control 140.))

((time .32041) (switching-state #(139.26 -. 19212 196.51))

(control *local-control*))
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trajectory 3

init-pt: #(0. 140. 0. 290.)
((time 0.) (switching-state #(140. 0. 290.))

(control 300.))
((time .19536) (switching-state #(264.69 -105.03 340.68))

(control 140.))
((time .42865) (switching-state #(142.4 3.2661 202.69))
(control *local-control*))

trajectory 4

init-pt: #(0. 140. 0. 300.)
#(0. 140. 0. 300.) is outside controllable region
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